A143927
G.f. satisfies: A(x) = (1 + x*A(x) + x^2*A(x)^2)^2.
Original entry on oeis.org
1, 2, 7, 28, 123, 572, 2769, 13806, 70414, 365636, 1926505, 10273870, 55349155, 300783420, 1646828655, 9075674700, 50304255210, 280248358964, 1568399676946, 8813424968192, 49709017472751, 281306750922072, 1596802663432503
Offset: 0
-
Table[GegenbauerC[n,-2n-2,-1/2]/(n+1),{n,0,12}] (* Emanuele Munarini, Oct 20 2016 *)
n = 20;
A = Sum[a[k] x^k, {k, 0, n}] + x O[x]^n;
Table[a[k], {k, 0, n}] /. Reverse[Solve[LogicalExpand[(1 + x A + x^2 A^2)^2 == A]]] (* Emanuele Munarini, Oct 20 2016 *)
-
makelist(ultraspherical(n,-2*n-2,-1/2)/(n+1),n,0,12); /* Emanuele Munarini, Oct 20 2016 */
-
{a(n)=local(A=1+x+x*O(x^n));for(i=0,n,A=(1+x*A+x^2*A^2)^2);polcoeff(A,n)}
A365183
G.f. satisfies A(x) = 1 + x*A(x)^4*(1 + x*A(x)^4).
Original entry on oeis.org
1, 1, 5, 34, 268, 2299, 20838, 196326, 1903524, 18868861, 190356231, 1948055058, 20173907384, 211020478270, 2226243632838, 23660868061422, 253099278807684, 2722819049879436, 29439894433161189, 319749417998303470, 3486914150183526920
Offset: 0
-
a(n) = sum(k=0, n\2, binomial(n-k, k)*binomial(4*n+1, n-k))/(4*n+1);
A255673
Coefficients of A(x), which satisfies: A(x) = 1 + x*A(x)^3 + x^2*A(x)^6.
Original entry on oeis.org
1, 1, 4, 21, 127, 833, 5763, 41401, 305877, 2309385, 17739561, 138197876, 1089276972, 8670856834, 69606939717, 562879492551, 4580890678781, 37490975387565, 308369889858450, 2547741413147700, 21133987935358776, 175947462569886786, 1469656053534121804
Offset: 0
A(x) = 1 + x + 4*x^2 + 21*x^3 + 127*x^4 + 833*x^5 + 5763*x^6 ...
-
a:= n-> coeff(series(RootOf(1-A+x*A^3+x^2*A^6, A), x, n+1), x, n):
seq(a(n), n=0..30); # Alois P. Heinz, Jul 15 2015
# second Maple program:
a:= proc(n) option remember; `if`(n<2, 1, 9*(((3*n-1))*
(2*n-1)*(3*n-2)*(9063*n^4-18126*n^3+8403*n^2+660*n-280)*a(n-1)
+(27*(n-1))*(3*n-1)*(3*n-4)*(3*n-2)*(3*n-5)*(57*n^2-2)*a(n-2))
/((5*(5*n+2))*(5*n-1)*(5*n+1)*(5*n-2)*n*(57*n^2-114*n+55)))
end:
seq(a(n), n=0..30); # Alois P. Heinz, Jul 16 2015
-
m = 30; A[_] = 0;
Do[A[x_] = 1 + x A[x]^3 + x^2 A[x]^6 + O[x]^m, {m}];
CoefficientList[A[x], x] (* Jean-François Alcover, Oct 04 2019 *)
-
a(n) = sum(k=0, n\2, binomial(n-k, k)*binomial(3*n+1, n-k))/(3*n+1); \\ Seiichi Manyama, Sep 02 2023
A365189
G.f. satisfies A(x) = 1 + x*A(x)^5*(1 + x*A(x)^5).
Original entry on oeis.org
1, 1, 6, 50, 485, 5130, 57391, 667777, 7999095, 97986680, 1221813880, 15456556791, 197887386913, 2559189842240, 33383097891135, 438714241508615, 5803049210371375, 77199163872173757, 1032215519193531310, 13864180990526161995, 186975433988014039830
Offset: 0
-
a(n) = sum(k=0, n\2, binomial(n-k, k)*binomial(5*n+1, n-k))/(5*n+1);
A143926
G.f. satisfies: A(x) = 1 + x*A(x)*A(-x) + x^2*A(x)^2*A(-x)^2.
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 7, 11, 28, 46, 123, 207, 572, 979, 2769, 4797, 13806, 24138, 70414, 123998, 365636, 647615, 1926505, 3428493, 10273870, 18356714, 55349155, 99229015, 300783420, 540807165, 1646828655, 2968468275, 9075674700
Offset: 0
G.f. A(x) = 1 + x + x^2 + x^3 + 2*x^4 + 3*x^5 + 7*x^6 + 11*x^7 +...
A(x)*A(-x) = 1 + x^2 + 3*x^4 + 11*x^6 + 46*x^8 + 207*x^10 + 979*x^12 +...
A(x)^2*A(-x)^2 = 1 + 2*x^2 + 7*x^4 + 28*x^6 + 123*x^8 + 572*x^10 +...
A(x)^4*A(-x)^4 = 1 + 4*x^2 + 18*x^4 + 84*x^6 + 407*x^8 + 2028*x^10 +...
from this we see that if B(x^2) = A(x)*A(-x)
then B(x) = 1 + x*B(x)^2 + x^2*B(x)^4
and A(x) = 1 + x*B(x^2) + x^2*B(x^2)^2.
-
a[n_] := Module[{A = 1 + x, B}, For[i = 0, i <= n, i++, B = A*(A /. x -> -x); A = 1 + x*B + x^2*B^2 + O[x]^(n+1) // Normal]; SeriesCoefficient[A, {x, 0, n}]]; Table[a[n], {n, 0, 32}] (* Jean-François Alcover, Oct 22 2016, adapted from PARI *)
-
{a(n)=local(A=1+x+x*O(x^n));for(i=0,n,B=A*subst(A,x,-x);A=1+x*B+x^2*B^2);polcoeff(A,n)}
A026302
a(n) = number of (s(0), s(1), ..., s(n)) such that s(i) is a nonnegative integer and |s(i) - s(i-1)| <= 1 for i = 1,2,...,n, s(0) = 0, s(2n) = n. Also a(n) = T(2n,n), where T is the array in A026300.
Original entry on oeis.org
1, 2, 9, 44, 230, 1242, 6853, 38376, 217242, 1239980, 7123765, 41141916, 238637282, 1389206210, 8112107475, 47495492400, 278722764954, 1638970147188, 9654874654438, 56965811111240, 336590781348276, 1991357644501170
Offset: 0
-
b:= proc(x, y) option remember; `if`(min(x, y)<0, 0,
`if`(max(x, y)=0, 1, b(x-1, y)+b(x, y-1)+b(x-2, y+1)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..23); # Alois P. Heinz, Sep 28 2019
-
Table[Binomial[2*n, n]*Hypergeometric2F1[1/2 - n/2, -n/2, 2 + n, 4], {n, 0, 30}] (* Vaclav Kotesovec, Sep 17 2019 *)
-
A026300(n,k)={ if(n<0 || k < 0, return(0) ;) ; if(n<=1, 1, if(k==0, 1, sum(i=0,k/2, binomial(n,2*i+n-k)*(binomial(2*i+n-k,i)-binomial(2*i+n-k,i-1))) ;) ;) ; }
A026302(n)={ A026300(2*n,n) ; }
{ for(n=0,21, print(n," ",A026302(n))) ; } \\ R. J. Mathar, Oct 26 2006
A365268
G.f. satisfies A(x) = 1 + x*A(x)^2*(1 + x^3*A(x)^2).
Original entry on oeis.org
1, 1, 2, 5, 15, 48, 160, 549, 1929, 6909, 25134, 92612, 344924, 1296376, 4910656, 18728645, 71857133, 277160183, 1074085446, 4180057725, 16329796959, 64014638564, 251734985808, 992788252700, 3925688845948, 15560762343388, 61818928594952
Offset: 0
-
a(n) = sum(k=0, n\4, binomial(n-3*k, k)*binomial(2*n-4*k+1, n-3*k)/(2*n-4*k+1));
A378292
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,0) = 0^n and T(n,k) = k * Sum_{r=0..n} binomial(2*n+k,r) * binomial(r,n-r)/(2*n+k) for k > 0.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 3, 7, 11, 0, 1, 4, 12, 28, 46, 0, 1, 5, 18, 52, 123, 207, 0, 1, 6, 25, 84, 240, 572, 979, 0, 1, 7, 33, 125, 407, 1155, 2769, 4797, 0, 1, 8, 42, 176, 635, 2028, 5733, 13806, 24138, 0, 1, 9, 52, 238, 936, 3276, 10332, 29136, 70414, 123998, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, ...
0, 3, 7, 12, 18, 25, 33, ...
0, 11, 28, 52, 84, 125, 176, ...
0, 46, 123, 240, 407, 635, 936, ...
0, 207, 572, 1155, 2028, 3276, 4998, ...
0, 979, 2769, 5733, 10332, 17140, 26860, ...
-
T(n, k, t=2, u=2) = if(k==0, 0^n, k*sum(r=0, n, binomial(t*r+u*(n-r)+k, r)*binomial(r, n-r)/(t*r+u*(n-r)+k)));
matrix(7, 7, n, k, T(n-1, k-1))
A364477
G.f. satisfies A(x) = 1 + x*A(x)^2 + x^2*A(x)^7.
Original entry on oeis.org
1, 1, 3, 14, 76, 448, 2791, 18078, 120516, 821435, 5698422, 40101623, 285583775, 2054272430, 14903954415, 108932920861, 801350333186, 5928653489398, 44084056075057, 329279673851792, 2469493161891742, 18588339309502760, 140383789476473354
Offset: 0
-
a(n) = sum(k=0, n\2, binomial(2*n+3*k, k)*binomial(2*n+2*k, n-2*k)/(n+4*k+1));
A025184
a(n) = T(2n,n), where T is the array defined in A025177.
Original entry on oeis.org
1, 1, 7, 35, 189, 1038, 5797, 32747, 186615, 1070762, 6177698, 35802935, 208279007, 1215507450, 7113090285, 41724381765, 245258504925, 1444292029818, 8519114704870, 50323176446818, 297654524450998
Offset: 0
Showing 1-10 of 14 results.
Comments