cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A143927 G.f. satisfies: A(x) = (1 + x*A(x) + x^2*A(x)^2)^2.

Original entry on oeis.org

1, 2, 7, 28, 123, 572, 2769, 13806, 70414, 365636, 1926505, 10273870, 55349155, 300783420, 1646828655, 9075674700, 50304255210, 280248358964, 1568399676946, 8813424968192, 49709017472751, 281306750922072, 1596802663432503
Offset: 0

Views

Author

Paul D. Hanna, Sep 08 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Table[GegenbauerC[n,-2n-2,-1/2]/(n+1),{n,0,12}] (* Emanuele Munarini, Oct 20 2016 *)
    n = 20;
    A = Sum[a[k] x^k, {k, 0, n}] + x O[x]^n;
    Table[a[k], {k, 0, n}] /. Reverse[Solve[LogicalExpand[(1 + x A + x^2 A^2)^2 == A]]] (* Emanuele Munarini, Oct 20 2016 *)
  • Maxima
    makelist(ultraspherical(n,-2*n-2,-1/2)/(n+1),n,0,12); /* Emanuele Munarini, Oct 20 2016 */
  • PARI
    {a(n)=local(A=1+x+x*O(x^n));for(i=0,n,A=(1+x*A+x^2*A^2)^2);polcoeff(A,n)}
    

Formula

Self-convolution of A006605.
Bisection of A143926.
a(n) = ((24*n+12)*A006605(n) + (3*n+5)*A006605(n+1))/(13*n+17). - Mark van Hoeij, Jul 14 2010
a(n) = (1/(n+1))*Sum_{j=0..2*n+2} (binomial(j,2*j-3*n-4)*binomial(2*n+2 ,j)). - Vladimir Kruchinin, Dec 24 2010
a(n) = GegenbauerPoly(n,-2n-2,-1/2)/(n+1). - Emanuele Munarini, Oct 20 2016
a(n) = T(2*n+2, n)/(n+1), where T(n,k) = A027907(n,k). - Emanuele Munarini, Oct 20 2016
The g.f. A(x) satisfies 1 + x*A'(x)/A(x) = 1 + 2*x + 10*x^2 + 50*x^3 + 266*x^3 + ..., the g.f. of A027908. - Peter Bala, Aug 03 2023

A365183 G.f. satisfies A(x) = 1 + x*A(x)^4*(1 + x*A(x)^4).

Original entry on oeis.org

1, 1, 5, 34, 268, 2299, 20838, 196326, 1903524, 18868861, 190356231, 1948055058, 20173907384, 211020478270, 2226243632838, 23660868061422, 253099278807684, 2722819049879436, 29439894433161189, 319749417998303470, 3486914150183526920
Offset: 0

Views

Author

Seiichi Manyama, Aug 25 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\2, binomial(n-k, k)*binomial(4*n+1, n-k))/(4*n+1);

Formula

a(n) = (1/(4*n+1)) * Sum_{k=0..floor(n/2)} binomial(n-k,k) * binomial(4*n+1,n-k).

A255673 Coefficients of A(x), which satisfies: A(x) = 1 + x*A(x)^3 + x^2*A(x)^6.

Original entry on oeis.org

1, 1, 4, 21, 127, 833, 5763, 41401, 305877, 2309385, 17739561, 138197876, 1089276972, 8670856834, 69606939717, 562879492551, 4580890678781, 37490975387565, 308369889858450, 2547741413147700, 21133987935358776, 175947462569886786, 1469656053534121804
Offset: 0

Views

Author

Werner Schulte, Jul 10 2015

Keywords

Comments

This sequence is the next after A001006 and A006605.

Examples

			A(x) = 1 + x + 4*x^2 + 21*x^3 + 127*x^4 + 833*x^5 + 5763*x^6 ...
		

Crossrefs

Programs

  • Maple
    a:= n-> coeff(series(RootOf(1-A+x*A^3+x^2*A^6, A), x, n+1), x, n):
    seq(a(n), n=0..30);  # Alois P. Heinz, Jul 15 2015
    # second Maple program:
    a:= proc(n) option remember; `if`(n<2, 1, 9*(((3*n-1))*
         (2*n-1)*(3*n-2)*(9063*n^4-18126*n^3+8403*n^2+660*n-280)*a(n-1)
         +(27*(n-1))*(3*n-1)*(3*n-4)*(3*n-2)*(3*n-5)*(57*n^2-2)*a(n-2))
          /((5*(5*n+2))*(5*n-1)*(5*n+1)*(5*n-2)*n*(57*n^2-114*n+55)))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Jul 16 2015
  • Mathematica
    m = 30; A[_] = 0;
    Do[A[x_] = 1 + x A[x]^3 + x^2 A[x]^6 + O[x]^m, {m}];
    CoefficientList[A[x], x] (* Jean-François Alcover, Oct 04 2019 *)
  • PARI
    a(n) = sum(k=0, n\2, binomial(n-k, k)*binomial(3*n+1, n-k))/(3*n+1); \\ Seiichi Manyama, Sep 02 2023

Formula

a(n+1) = Sum_{j=0..3*n+4} binomial(j,2*j-5*n-7) * binomial(3*n+4,j) / (3*n+4). (conjectured). [Vladimir Kruchinin, Mar 09 2013]
a(n) = 1/(3*n+1) * Sum_{k=0..n} (-1)^k * binomial(3*n+1, k) * binomial(6*n+2-2*k, n-k). (conjectured)
G.f. A(x) satisfies A(x) = G(x*A(x)), where G is g.f. of A006605.
G.f. A(x) satisfies A(x) = H(x*A(x)^2), where H is g.f. of A001006.
From Peter Bala, Jul 27 2023: (Start)
Define b(n) = [x^n] (1 + x + x^2)^(3*n). Then A(x)^3 = exp(Sum_{n >= 1} b(n)*x^n/n).
A(x^3) = (1/x) * series reversion of x/(1 + x^3 + x^6) = 1 + x^3 + 4*x^6 + 21*x^9 + 127*x^12 + .... (End)
a(n) = (1/(3*n+1)) * Sum_{k=0..floor(n/2)} binomial(n-k,k) * binomial(3*n+1,n-k). - Seiichi Manyama, Sep 02 2023

Extensions

More terms from Alois P. Heinz, Jul 15 2015

A365189 G.f. satisfies A(x) = 1 + x*A(x)^5*(1 + x*A(x)^5).

Original entry on oeis.org

1, 1, 6, 50, 485, 5130, 57391, 667777, 7999095, 97986680, 1221813880, 15456556791, 197887386913, 2559189842240, 33383097891135, 438714241508615, 5803049210371375, 77199163872173757, 1032215519193531310, 13864180990526161995, 186975433988014039830
Offset: 0

Views

Author

Seiichi Manyama, Aug 25 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\2, binomial(n-k, k)*binomial(5*n+1, n-k))/(5*n+1);

Formula

a(n) = (1/(5*n+1)) * Sum_{k=0..floor(n/2)} binomial(n-k,k) * binomial(5*n+1,n-k).

A143926 G.f. satisfies: A(x) = 1 + x*A(x)*A(-x) + x^2*A(x)^2*A(-x)^2.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 7, 11, 28, 46, 123, 207, 572, 979, 2769, 4797, 13806, 24138, 70414, 123998, 365636, 647615, 1926505, 3428493, 10273870, 18356714, 55349155, 99229015, 300783420, 540807165, 1646828655, 2968468275, 9075674700
Offset: 0

Views

Author

Paul D. Hanna, Sep 06 2008

Keywords

Comments

Bisections form A006605 and A143927;
A006605 is the number of modes of connections of 2n points and
A143927 is the self-convolution of A006605.

Examples

			G.f. A(x) = 1 + x + x^2 + x^3 + 2*x^4 + 3*x^5 + 7*x^6 + 11*x^7 +...
A(x)*A(-x) = 1 + x^2 + 3*x^4 + 11*x^6 + 46*x^8 + 207*x^10 + 979*x^12 +...
A(x)^2*A(-x)^2 = 1 + 2*x^2 + 7*x^4 + 28*x^6 + 123*x^8 + 572*x^10 +...
A(x)^4*A(-x)^4 = 1 + 4*x^2 + 18*x^4 + 84*x^6 + 407*x^8 + 2028*x^10 +...
from this we see that if B(x^2) = A(x)*A(-x)
then B(x) = 1 + x*B(x)^2 + x^2*B(x)^4
and A(x) = 1 + x*B(x^2) + x^2*B(x^2)^2.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{A = 1 + x, B}, For[i = 0, i <= n, i++, B = A*(A /. x -> -x); A = 1 + x*B + x^2*B^2 + O[x]^(n+1) // Normal]; SeriesCoefficient[A, {x, 0, n}]]; Table[a[n], {n, 0, 32}] (* Jean-François Alcover, Oct 22 2016, adapted from PARI *)
  • PARI
    {a(n)=local(A=1+x+x*O(x^n));for(i=0,n,B=A*subst(A,x,-x);A=1+x*B+x^2*B^2);polcoeff(A,n)}

Formula

Define B(x) by B(x^2) = A(x)*A(-x); then B(x) = 1 + x*B(x)^2 + x^2*B(x)^4 is the g.f. of A006605.
Recurrence: 3*n*(3*n+1)*(3*n+2)*(507*n^4 - 3575*n^3 + 8895*n^2 - 8953*n + 3054)*a(n) = - 12*(4017*n^5 - 20319*n^4 + 31895*n^3 - 17595*n^2 + 2338*n + 384)*a(n-1) + 4*(n-2)*(17745*n^6 - 125125*n^5 + 331891*n^4 - 396335*n^3 + 173912*n^2 + 17532*n - 13140)*a(n-2) - 144*(n-3)*(n-2)*(312*n^3 - 988*n^2 + 407*n + 29)*a(n-3) + 144*(n-4)*(n-3)*(n-2)*(507*n^4 - 1547*n^3 + 1212*n^2 + 140*n - 72)*a(n-4). - Vaclav Kotesovec, Dec 21 2013
a(n) ~ c*d^n/(sqrt(Pi)*n^(3/2)), where d = sqrt(70/27+(26*sqrt(13))/27) = 2.4626418602647616787... is the root of the equation -144 - 140*d^2 + 27*d^4 = 0 and c = 2*sqrt((5+1/sqrt(13))/3)/3 = 0.88421131194123... if n is even, and c = sqrt(1+11/sqrt(13))/3 = 0.670890873659690... if n is odd. - Vaclav Kotesovec, Dec 21 2013

A026302 a(n) = number of (s(0), s(1), ..., s(n)) such that s(i) is a nonnegative integer and |s(i) - s(i-1)| <= 1 for i = 1,2,...,n, s(0) = 0, s(2n) = n. Also a(n) = T(2n,n), where T is the array in A026300.

Original entry on oeis.org

1, 2, 9, 44, 230, 1242, 6853, 38376, 217242, 1239980, 7123765, 41141916, 238637282, 1389206210, 8112107475, 47495492400, 278722764954, 1638970147188, 9654874654438, 56965811111240, 336590781348276, 1991357644501170
Offset: 0

Views

Author

Keywords

Crossrefs

Bisection of A026307.

Programs

  • Maple
    b:= proc(x, y) option remember; `if`(min(x, y)<0, 0,
         `if`(max(x, y)=0, 1, b(x-1, y)+b(x, y-1)+b(x-2, y+1)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..23);  # Alois P. Heinz, Sep 28 2019
  • Mathematica
    Table[Binomial[2*n, n]*Hypergeometric2F1[1/2 - n/2, -n/2, 2 + n, 4], {n, 0, 30}] (* Vaclav Kotesovec, Sep 17 2019 *)
  • PARI
    A026300(n,k)={ if(n<0 || k < 0, return(0) ;) ; if(n<=1, 1, if(k==0, 1, sum(i=0,k/2, binomial(n,2*i+n-k)*(binomial(2*i+n-k,i)-binomial(2*i+n-k,i-1))) ;) ;) ; }
    A026302(n)={ A026300(2*n,n) ; }
    { for(n=0,21, print(n," ",A026302(n))) ; } \\ R. J. Mathar, Oct 26 2006

Formula

a(n) = binomial(2*n,n)*hypergeom([ -n/2, 1/2 - n/2],[n+2],4). - Mark van Hoeij, Jun 02 2010
a(n) = (n + 1) * A006605(n). - Mark van Hoeij, Jul 02 2010
G.f. A(x)=(x*M(x))', where M(x)=1+x*M(x)^2+x^2*M(x)^4. - Vladimir Kruchinin, May 25 2012
From Ilya Gutkovskiy, Sep 21 2017: (Start)
a(n) = [x^n] ((1 - x - sqrt(1 - 2*x - 3*x^2))/(2*x^2))^(n+1).
a(n) = [x^n] (1/(1 - x - x^2/(1 - x - x^2/(1 - x - x^2/(1 - x - x^2/(1 - x - x^2/(1 - ...)))))))^(n+1), a continued fraction. (End)
From Vaclav Kotesovec, Sep 17 2019: (Start)
Recurrence: 3*n^2*(3*n + 1)*(3*n + 2)*(13*n - 9)*a(n) = 2*(n+1)*(2*n - 1)*(455*n^3 - 315*n^2 - 44*n + 24)*a(n-1) + 36*n*(n+1)*(2*n - 3)*(2*n - 1)*(13*n + 4)*a(n-2).
a(n) ~ sqrt(277 + 89*sqrt(13)) * (70 + 26*sqrt(13))^n / (13^(1/4) * sqrt(2*Pi*n) * 3^(3*n + 5/2)). (End)

Extensions

Corrected by R. J. Mathar, Oct 26 2006

A365268 G.f. satisfies A(x) = 1 + x*A(x)^2*(1 + x^3*A(x)^2).

Original entry on oeis.org

1, 1, 2, 5, 15, 48, 160, 549, 1929, 6909, 25134, 92612, 344924, 1296376, 4910656, 18728645, 71857133, 277160183, 1074085446, 4180057725, 16329796959, 64014638564, 251734985808, 992788252700, 3925688845948, 15560762343388, 61818928594952
Offset: 0

Views

Author

Seiichi Manyama, Aug 30 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\4, binomial(n-3*k, k)*binomial(2*n-4*k+1, n-3*k)/(2*n-4*k+1));

Formula

a(n) = Sum_{k=0..floor(n/4)} binomial(n-3*k,k) * binomial(2*n-4*k+1,n-3*k)/(2*n-4*k+1).

A378292 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,0) = 0^n and T(n,k) = k * Sum_{r=0..n} binomial(2*n+k,r) * binomial(r,n-r)/(2*n+k) for k > 0.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 3, 7, 11, 0, 1, 4, 12, 28, 46, 0, 1, 5, 18, 52, 123, 207, 0, 1, 6, 25, 84, 240, 572, 979, 0, 1, 7, 33, 125, 407, 1155, 2769, 4797, 0, 1, 8, 42, 176, 635, 2028, 5733, 13806, 24138, 0, 1, 9, 52, 238, 936, 3276, 10332, 29136, 70414, 123998, 0
Offset: 0

Views

Author

Seiichi Manyama, Nov 21 2024

Keywords

Examples

			Square array begins:
  1,   1,    1,    1,     1,     1,     1, ...
  0,   1,    2,    3,     4,     5,     6, ...
  0,   3,    7,   12,    18,    25,    33, ...
  0,  11,   28,   52,    84,   125,   176, ...
  0,  46,  123,  240,   407,   635,   936, ...
  0, 207,  572, 1155,  2028,  3276,  4998, ...
  0, 979, 2769, 5733, 10332, 17140, 26860, ...
		

Crossrefs

Columns k=0..2 give A000007, A006605, A143927.

Programs

  • PARI
    T(n, k, t=2, u=2) = if(k==0, 0^n, k*sum(r=0, n, binomial(t*r+u*(n-r)+k, r)*binomial(r, n-r)/(t*r+u*(n-r)+k)));
    matrix(7, 7, n, k, T(n-1, k-1))

Formula

G.f. A_k(x) of column k satisfies A_k(x) = ( 1 + x * A_k(x)^(2/k) * (1 + x * A_k(x)^(2/k)) )^k for k > 0.
G.f. of column k: B(x)^k where B(x) is the g.f. of A006605.
B(x)^k = B(x)^(k-1) + x * B(x)^(k+1) + x^2 * B(x)^(k+3). So T(n,k) = T(n,k-1) + T(n-1,k+1) + T(n-2,k+3) for n > 1.

A364477 G.f. satisfies A(x) = 1 + x*A(x)^2 + x^2*A(x)^7.

Original entry on oeis.org

1, 1, 3, 14, 76, 448, 2791, 18078, 120516, 821435, 5698422, 40101623, 285583775, 2054272430, 14903954415, 108932920861, 801350333186, 5928653489398, 44084056075057, 329279673851792, 2469493161891742, 18588339309502760, 140383789476473354
Offset: 0

Views

Author

Seiichi Manyama, Jul 26 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\2, binomial(2*n+3*k, k)*binomial(2*n+2*k, n-2*k)/(n+4*k+1));

Formula

a(n) = Sum_{k=0..floor(n/2)} binomial(2*n+3*k,k) * binomial(2*n+2*k,n-2*k) / (n+4*k+1).

A025184 a(n) = T(2n,n), where T is the array defined in A025177.

Original entry on oeis.org

1, 1, 7, 35, 189, 1038, 5797, 32747, 186615, 1070762, 6177698, 35802935, 208279007, 1215507450, 7113090285, 41724381765, 245258504925, 1444292029818, 8519114704870, 50323176446818, 297654524450998
Offset: 0

Views

Author

Keywords

Programs

Formula

a(n) = (2*(3*n+2)*(3*n+1)*A006605(n)-(19*n+4)*(2*n-1)*A006605(n-1))/(13*n+4) for n>0. [Mark van Hoeij, Jul 02 2010]
Conjecture: 33*n*(3*n-1)*(3*n-2)*a(n) +11*(2047*n^3-10725*n^2+17192*n-8520)*a(n-1) +9*(-4397*n^3-10169*n^2+110500*n-145368)*a(n-2) -54*(2*n-5)*(5353*n^2-33313*n+53904)*a(n-3) -115668*(2*n-5)*(2*n-7)*(n-4)*a(n-4)=0. - R. J. Mathar, Feb 25 2015
Showing 1-10 of 14 results. Next