cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A364476 G.f. satisfies A(x) = 1 + x*A(x) + x^2*A(x)^7.

Original entry on oeis.org

1, 1, 2, 9, 44, 226, 1241, 7093, 41666, 250260, 1529993, 9488398, 59545909, 377451385, 2413157855, 15542535697, 100753850132, 656856027658, 4303970039402, 28328599504756, 187214549485759, 1241775795647609, 8263989319451514, 55163575187733922
Offset: 0

Views

Author

Seiichi Manyama, Jul 26 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\2, binomial(n+5*k, k)*binomial(n+4*k, n-2*k)/(6*k+1));

Formula

a(n) = Sum_{k=0..floor(n/2)} binomial(n+5*k,k) * binomial(n+4*k,n-2*k) / (6*k+1) = Sum_{k=0..floor(n/2)} binomial(n+5*k,7*k) * binomial(7*k,k) / (6*k+1).

A364473 G.f. satisfies A(x) = 1 + x*A(x)^2 + x^2*A(x)^6.

Original entry on oeis.org

1, 1, 3, 13, 65, 353, 2024, 12057, 73890, 462851, 2950261, 19073921, 124776881, 824409052, 5493384031, 36874564529, 249114808794, 1692489908494, 11556616157589, 79265016880139, 545860966841247, 3772800724433931, 26162662010039826, 181974370638420829
Offset: 0

Views

Author

Seiichi Manyama, Jul 26 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\2, binomial(2*n+2*k, k)*binomial(2*n+k, n-2*k)/(n+3*k+1));

Formula

a(n) = Sum_{k=0..floor(n/2)} binomial(2*n+2*k,k) * binomial(2*n+k,n-2*k) / (n+3*k+1).
Showing 1-2 of 2 results.