cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A364475 G.f. satisfies A(x) = 1 + x*A(x)^3 + x^2*A(x)^3.

Original entry on oeis.org

1, 1, 4, 18, 94, 529, 3135, 19270, 121732, 785496, 5155167, 34304706, 230923653, 1569684910, 10759159000, 74281473504, 516089542684, 3605685460750, 25316226436086, 178538289189108, 1264131169628799, 8982889404251721, 64041351551534215
Offset: 0

Views

Author

Seiichi Manyama, Jul 26 2023

Keywords

Crossrefs

Programs

  • Maple
    A364475 := proc(n)
        add( binomial(3*n-3*k,k) * binomial(3*n-4*k,n-2*k)/(2*n-2*k+1),k=0..n/2) ;
    end proc:
    seq(A364475(n),n=0..80); # R. J. Mathar, Jul 27 2023
  • PARI
    a(n) = sum(k=0, n\2, binomial(3*n-3*k, k)*binomial(3*n-4*k, n-2*k)/(2*n-2*k+1));

Formula

a(n) = Sum_{k=0..floor(n/2)} binomial(3*n-3*k,k) * binomial(3*n-4*k,n-2*k) / (2*n-2*k+1).
D-finite with recurrence 2*n*(2*n+1)*a(n) -(5*n+1)*(3*n-2)*a(n-1) +4*(-25*n^2+75*n-59) *a(n-2) +9*(-15*n^2+69*n-80)*a(n-3) -6*(3*n-8)*(3*n-10) *a(n-4)=0. - R. J. Mathar, Jul 27 2023

A365183 G.f. satisfies A(x) = 1 + x*A(x)^4*(1 + x*A(x)^4).

Original entry on oeis.org

1, 1, 5, 34, 268, 2299, 20838, 196326, 1903524, 18868861, 190356231, 1948055058, 20173907384, 211020478270, 2226243632838, 23660868061422, 253099278807684, 2722819049879436, 29439894433161189, 319749417998303470, 3486914150183526920
Offset: 0

Views

Author

Seiichi Manyama, Aug 25 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\2, binomial(n-k, k)*binomial(4*n+1, n-k))/(4*n+1);

Formula

a(n) = (1/(4*n+1)) * Sum_{k=0..floor(n/2)} binomial(n-k,k) * binomial(4*n+1,n-k).

A365189 G.f. satisfies A(x) = 1 + x*A(x)^5*(1 + x*A(x)^5).

Original entry on oeis.org

1, 1, 6, 50, 485, 5130, 57391, 667777, 7999095, 97986680, 1221813880, 15456556791, 197887386913, 2559189842240, 33383097891135, 438714241508615, 5803049210371375, 77199163872173757, 1032215519193531310, 13864180990526161995, 186975433988014039830
Offset: 0

Views

Author

Seiichi Manyama, Aug 25 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\2, binomial(n-k, k)*binomial(5*n+1, n-k))/(5*n+1);

Formula

a(n) = (1/(5*n+1)) * Sum_{k=0..floor(n/2)} binomial(n-k,k) * binomial(5*n+1,n-k).

A364474 G.f. satisfies A(x) = 1 + x*A(x)^3 + x^2*A(x).

Original entry on oeis.org

1, 1, 4, 16, 77, 403, 2228, 12800, 75653, 457022, 2809266, 17514200, 110480475, 703850686, 4522217364, 29268545416, 190645760149, 1248817411471, 8221323983431, 54365667330636, 360954069730636, 2405225494066647, 16080210766344354, 107828663888705292
Offset: 0

Views

Author

Seiichi Manyama, Jul 26 2023

Keywords

Crossrefs

Programs

  • Maple
    A364474 := proc(n)
        add( binomial(3*n-5*k,k) * binomial(3*n-6*k,n-2*k)/(2*n-4*k+1),k=0..n/2) ;
    end proc:
    seq(A364474(n),n=0..80); # R. J. Mathar, Jul 27 2023
  • Mathematica
    Table[Sum[Binomial[3*n - 5*k, k]*Binomial[3*n - 6*k, n - 2*k]/(2*n - 4*k + 1), {k, 0, Floor[n/2]}], {n, 0, 25}] (* Wesley Ivan Hurt, May 25 2024 *)
  • PARI
    a(n) = sum(k=0, n\2, binomial(3*n-5*k, k)*binomial(3*n-6*k, n-2*k)/(2*n-4*k+1));

Formula

a(n) = Sum_{k=0..floor(n/2)} binomial(3*n-5*k,k) * binomial(3*n-6*k,n-2*k) / (2*n-4*k+1).
D-finite with recurrence 2*n*(2*n+1)*(3*n-7)*a(n) -3*(3*n-1)*(3*n-7)*(3*n-2) *a(n-1) -2*(n-3)*(18*n^2-33*n+4) *a(n-2) +2*(18*n^3-141*n^2+287*n-64) *a(n-4) -2*(n-4)*(3*n-1)*(2*n-13)*a(n-6)=0. - R. J. Mathar, Jul 27 2023

A365128 G.f. satisfies A(x) = (1 + x*A(x)*(1 + x*A(x)))^3.

Original entry on oeis.org

1, 3, 15, 88, 567, 3876, 27607, 202653, 1522365, 11647038, 90435804, 710855544, 5645365576, 45228648078, 365109237801, 2966862631856, 24248879149005, 199213507774365, 1644138419038500, 13625326165675698, 113336685917785332, 945931091151789808
Offset: 0

Views

Author

Seiichi Manyama, Aug 23 2023

Keywords

Crossrefs

Programs

  • Maple
    A365128 := proc(n)
        add(binomial(3*(n+1),k) * binomial(k,n-k),k=0..n) ;
        %/(n+1) ;
    end proc:
    seq(A365128(n),n=0..70) ; # R. J. Mathar, Dec 04 2023
  • PARI
    a(n, s=1, t=3) = sum(k=0, n, binomial(t*(n+1), k)*binomial(s*k, n-k))/(n+1);

Formula

If g.f. satisfies A(x) = (1 + x*A(x)*(1 + x*A(x))^s)^t, then a(n) = (1/(n+1)) * Sum_{k=0..n} binomial(t*(n+1),k) * binomial(s*k,n-k).
D-finite with recurrence 205*(5*n+6)*(5*n+2)*(5*n+3)*(5*n+4)*(n+1)*a(n) +9*(-5948592*n^5+11369145*n^4 -5182620*n^3 -351495*n^2+204302*n-6560) *a(n-1) +243*(-801282*n^5 +14391105*n^4 -55889790*n^3 +90254895*n^2 -66199848*n +18182560)*a(n-2) +6561*(3*n-5) *(3*n-4)*(93048*n^3 -579621*n^2 +1227037*n -878874)*a(n-3) +48715425*(n-3) *(3*n-4)*(3*n-7) *(3*n-5)*(3*n-8)*a(n-4)=0. - R. J. Mathar, Dec 04 2023
From Seiichi Manyama, Sep 20 2024: (Start)
G.f.: (1/x) * Series_Reversion( x / (1+x+x^2)^3 ).
G.f.: B(x)^3, where B(x) is the g.f. of A255673. (End)

A364478 G.f. satisfies A(x) = 1 + x*A(x)^3 + x^2*A(x)^8.

Original entry on oeis.org

1, 1, 4, 23, 154, 1124, 8675, 69626, 575243, 4859778, 41789764, 364565277, 3218581695, 28702642553, 258172627259, 2339496034381, 21337716782873, 195726876816623, 1804472496834650, 16711389876481027, 155395461519245354, 1450298253483719944
Offset: 0

Views

Author

Seiichi Manyama, Jul 26 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\2, binomial(3*n+2*k, k)*binomial(3*n+k, n-2*k)/(2*n+3*k+1));

Formula

a(n) = Sum_{k=0..floor(n/2)} binomial(3*n+2*k,k) * binomial(3*n+k,n-2*k) / (2*n+3*k+1).

A367040 G.f. satisfies A(x) = 1 + x^2 + x*A(x)^3.

Original entry on oeis.org

1, 1, 4, 15, 70, 360, 1953, 11008, 63837, 378390, 2282205, 13960890, 86411232, 540166219, 3405341160, 21625820793, 138216775785, 888371346825, 5738510504979, 37234351046835, 242567430368298, 1585979835198675, 10403866383915844, 68453912880893025
Offset: 0

Views

Author

Seiichi Manyama, Nov 03 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\2, binomial(2*(n-2*k)+1, k)*binomial(3*(n-2*k), n-2*k)/(2*(n-2*k)+1));

Formula

a(n) = Sum_{k=0..floor(n/2)} binomial(2*(n-2*k)+1,k) * binomial(3*(n-2*k),n-2*k)/(2*(n-2*k)+1).

A261440 Array of coefficients A(n,k) of the formal power series P(n,x) read by upwards antidiagonals, where P(n,x) = Sum_{k>=0} A(n,k)*x^k = 1+x*P(n,x)^(1*n)+x^2*P(n,x)^(2*n) for n >= 0.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 3, 4, 0, 1, 1, 4, 11, 9, 0, 1, 1, 5, 21, 46, 21, 0, 1, 1, 6, 34, 127, 207, 51, 0, 1, 1, 7, 50, 268, 833, 979, 127, 0, 1, 1, 8, 69, 485, 2299, 5763, 4797, 323, 0, 1, 1, 9, 91, 794, 5130, 20838, 41401, 24138, 835, 0
Offset: 0

Views

Author

Werner Schulte, Aug 18 2015

Keywords

Comments

The terms define the array A(n,k):
n\k: 0 1 2 3 4 5 6 7 8 9 10 ...
0: 1 1 1 0 0 0 0 0 0 0 0 ...
1: 1 1 2 4 9 21 51 127 323 835 ...
2: 1 1 3 11 46 207 979 4797 24138 123998 ...
3: 1 1 4 21 127 833 5763 41401 305877 2309385 ...
4: 1 1 5 34 268 2299 20838 ...
5: 1 1 6 50 485 5130 ...
6: 1 1 7 69 794 ...
7: 1 1 8 91 ...
8: 1 1 9 116 ...
9: 1 1 10 144 ...
10: 1 ...
etc.
For row 1 see A001006, for row 2 see A006605, and for row 3 see A255673.
Be careful if you use the formulas for n < 0 (DIV0, signed values)!
Nevertheless, it might be interesting ...
Conjecture: The A(n,k), here n > 0, are the number of lattice paths, if
(a) length of path is k*n for the k-th term of row n,
(b) allowed steps are (1,-1), (1,-1+n) and (1,-1+2*n) for terms of row n,
(c) you start at (0,0), end at (k*n,0), and
(d) never cross the x-axis.
This is proved for row 1 (A001006) and row 2 (A006605).
Conjecture: The coefficients B(m,n,k) of the P(n,x)^m (see the formula below), m > 0 and n > 0, are the number of lattice paths, if
(a) length of path is k*n+m-1 (k-th coefficient of P(n,x)^m),
(b) allowed steps are (1,-1), (1,-1+n), and (1,-1+2*n),
(c) you start at (0,m-1), end at (k*n+m-1,0), and
(d) never cross the x-axis.
This is proved for B(1,1,k) (A001006), and B(1,2,k) (A006605). - Werner Schulte, Aug 30 2015

Examples

			The terms of the array A(n,k) read by upwards antidiagonals define the triangle T(n,m) = A(n-m,m) for 0 <= m <= n, i.e.
  1;
  1, 1;
  1, 1, 1;
  1, 1, 2,  0;
  1, 1, 3,  4,  0;
  1, 1, 4, 11,  9,  0;
  1, 1, 5, 21, 46, 21, 0;
  etc.
		

Crossrefs

Formula

A(n,k) = 1/(n*k+1)*Sum_{j=0..k} (-1)^j*binomial(n*k+1, j)*binomial(2*n*k+2-2*j, k-j) (conjectured).
The g.f. P(n,x) of row n of the array A(n,k) satisfy:
P(n,x) = (1 + x*P(n,x)^n)^2/(1 + x*P(n,x)^(n-1)), n > 0.
P(n,x) = P(n-1,x*P(n,x)), n > 0.
P(n,x) = P(n-2,x*P(n,x)^2), n > 1.
etc.
P(n,x) = P(0,x*P(n,x)^n), n >= 0.
The coefficients B(m,n,k) of the P(n,x)^m are:
B(m,n,k) = m/(n*k + m)*(Sum_{j=0..k} (-1)^j*binomial(n*k+m, j)* binomial(2*n*k + 2*m - 2*j, k - j)), if m > 0, and n > 0 (conjectured).
A(n,0) = A(n,1) = 1, n >= 0.
A(n,2) = n+1, n >= 0.
A(n,3) = n*(3*n + 5)/2, n >= 0.
A(n,4) = n*(8*n^2 + 18*n + 1)/3, n >= 0.
A(n,5) = n*(125*n^3 + 350*n^2 + 55*n - 26)/24, n >= 0.
P(n,x) = exp(Sum_{k>=1} 1/(n*k)*(Sum{j=0..k} (-1)^j*binomial(n*k,j)* binomial(2*n*k-2*j,k-j))) for n > 0 (conjectured). - Werner Schulte, Sep 20 2015
P(n,x/(1+x+x^2)^n) = 1+x+x^2 for n >= 0. - Werner Schulte, Oct 20 2015
Showing 1-8 of 8 results.