cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A143931 a(n) is the smallest positive integer x such that x^2 - n! is prime.

Original entry on oeis.org

2, 2, 3, 11, 19, 31, 79, 209, 607, 1921, 6337, 21907, 78913, 295289, 1143539, 4574149, 18859733, 80014841, 348776611, 1559776279, 7147792823, 33526120127, 160785623627, 787685471389, 3938427356623, 20082117944263, 104349745809077
Offset: 1

Views

Author

Artur Jasinski, Sep 05 2008

Keywords

Comments

For the smallest positive prime numbers of the form x^2 - n! see A143932.
For primes x in this sequence see A143933.

Examples

			a(1)=2 because 2^2-1! = 3 is prime;
a(2)=2 because 2^2-2! = 2 is prime;
a(3)=3 because 3^2-3! = 3 is prime;
a(4)=11 because 11^2-4! = 97 is prime.
		

Crossrefs

Programs

  • Mathematica
    a = {}; Do[k = Round[Sqrt[n! ]] + 1; While[ ! PrimeQ[k^2 - n! ], k++ ]; AppendTo[a, k], {n, 1, 50}]; a
    spi[n_]:=Module[{k=Ceiling[Sqrt[n!]],nf=n!},While[!PrimeQ[k^2-nf],k++];k]; Array[ spi,30] (* Harvey P. Dale, Feb 17 2023 *)

A143932 a(n) = smallest positive prime number of the form x^2 - n! (where x is a positive integer).

Original entry on oeis.org

3, 2, 3, 97, 241, 241, 1201, 3361, 5569, 61441, 240769, 915049, 240769, 17302321, 7076521, 49186201, 2100735289, 1074527281, 23971813321, 32354445841, 68820869329, 2992426816129, 26238323995129, 104071698229321
Offset: 1

Views

Author

Artur Jasinski, Sep 05 2008

Keywords

Comments

For smallest positive integers x see A143931. Prime x see A143933.

Examples

			a(1)=3 because 2^2 - 1! = 3;
a(2)=2 because 2^2 - 2! = 2;
a(3)=3 because 3^2 - 3! = 3;
a(4)=97 because 11^2 - 4! = 97.
		

Crossrefs

Programs

  • Mathematica
    b = {}; Do[k = Round[Sqrt[n! ]] + 1; While[ ! PrimeQ[k^2 - n! ], k++ ]; AppendTo[b, k^2-n! ], {n, 1, 50}]; b
Showing 1-2 of 2 results.