A143931 a(n) is the smallest positive integer x such that x^2 - n! is prime.
2, 2, 3, 11, 19, 31, 79, 209, 607, 1921, 6337, 21907, 78913, 295289, 1143539, 4574149, 18859733, 80014841, 348776611, 1559776279, 7147792823, 33526120127, 160785623627, 787685471389, 3938427356623, 20082117944263, 104349745809077
Offset: 1
Keywords
Examples
a(1)=2 because 2^2-1! = 3 is prime; a(2)=2 because 2^2-2! = 2 is prime; a(3)=3 because 3^2-3! = 3 is prime; a(4)=11 because 11^2-4! = 97 is prime.
Programs
-
Mathematica
a = {}; Do[k = Round[Sqrt[n! ]] + 1; While[ ! PrimeQ[k^2 - n! ], k++ ]; AppendTo[a, k], {n, 1, 50}]; a spi[n_]:=Module[{k=Ceiling[Sqrt[n!]],nf=n!},While[!PrimeQ[k^2-nf],k++];k]; Array[ spi,30] (* Harvey P. Dale, Feb 17 2023 *)
Comments