A143945 Wiener index of the grid P_n x P_n, where P_n is the path graph on n vertices.
0, 8, 72, 320, 1000, 2520, 5488, 10752, 19440, 33000, 53240, 82368, 123032, 178360, 252000, 348160, 471648, 627912, 823080, 1064000, 1358280, 1714328, 2141392, 2649600, 3250000, 3954600, 4776408, 5729472, 6828920, 8091000, 9533120, 11173888, 13033152, 15132040
Offset: 1
Examples
a(2)=8 because in P_2 x P_2 (a square) there are 4 distances equal to 1 and 2 distances equal to 2 (4*1 + 2*2 = 8).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000 (corrected by Ray Chandler, Jan 19 2019)
- Dragan Stevanovic, Hosoya polynomial of composite graphs, Discrete Math., Vol. 235, No. 1-3 (2001), pp. 237-244.
- B.-Y. Yang and Y.-N. Yeh, Wiener polynomials of some chemically interesting graphs, International Journal of Quantum Chemistry, Vol. 99 (2004), pp. 80-91.
- Y.-N. Yeh and I. Gutman, On the sum of all distances in composite graphs, Discrete Math., Vol. 135, No. 1-3 (1994), pp. 359-365.
- Eric Weisstein's World of Mathematics, Grid Graph.
- Eric Weisstein's World of Mathematics, Wiener Index.
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
Programs
-
Magma
[n^3*(n^2-1)/3: n in [1..40]]; // Vincenzo Librandi, Feb 08 2014
-
Maple
seq((1/3)*n^3*(n^2-1),n=1..33);
-
Mathematica
Table[n^3 (n^2 - 1)/3, {n, 40}] (* Harvey P. Dale, Feb 07 2014 *) LinearRecurrence[{6, -15, 20, -15, 6, -1}, {0, 8, 72, 320, 1000, 2520}, 30] (* Harvey P. Dale, Feb 07 2014 *) CoefficientList[Series[8 x (1 + 3 x + x^2)/(x - 1)^6, {x, 0, 40}], x] (* Vincenzo Librandi, Feb 08 2014 *)
-
PARI
a(n)=n^3*(n^2-1)/3 \\ Charles R Greathouse IV, Oct 21 2022
Formula
a(n) = Sum_{k=1..2n-2} k*A143944(n,k).
a(n) = n^3*(n^2-1)/3.
a(n) = 8*A006414(n-2). G.f.: 8*x^2*(1+3*x+x^2)/(x-1)^6. - R. J. Mathar, Sep 15 2010
a(n) = 6*a(n-1)-15*a(n-2)+20*a(n-3)-15*a(n-4)+6*a(n-5)-a(n-6), a(2)=8, a(3)=72, a(4)=320, a(5)=1000, a(6)=2520, a(7)=5488. - Harvey P. Dale, Feb 07 2014
From Amiram Eldar, Jan 09 2022: (Start)
Sum_{n>=2} 1/a(n) = 15/4 - 3*zeta(3).
Sum_{n>=2} (-1)^n/a(n) = 9*zeta(3)/4 + 6*log(2) - 27/4. (End)
Comments