A143954 Number of peaks in the peak plateaux of all Dyck paths of semilength n.
0, 0, 1, 5, 19, 68, 243, 880, 3233, 12021, 45119, 170595, 648787, 2479057, 9509627, 36598497, 141246127, 546433952, 2118424887, 8227983472, 32010173957, 124715628852, 486550020967, 1900433894942, 7431033132717, 29085434212042
Offset: 0
Keywords
Examples
a(3)=5 because in the peak plateaux of the Dyck paths UDUDUD, UD(UUDD), (UUDD)UD, (UUDUDD) and U(UUDD)D, shown between parentheses, we have 0 + 1 + 1 + 2 + 1 = 5 peaks.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Programs
-
Maple
C:=((1-sqrt(1-4*z))*1/2)/z: G:=z^2*C/((1-z)^2*sqrt(1-4*z)): Gser:=series(G,z= 0,30): seq(coeff(Gser,z,n),n=0..25);
-
Mathematica
CoefficientList[Series[x^2*((1-Sqrt[1-4*x])*1/2)/x/((1-x)^2*Sqrt[1-4*x]), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 20 2014 *)
-
PARI
x='x+O('x^50); concat([0,0], Vec(x*(1-sqrt(1-4*x))/(2*(1-x)^2*sqrt(1-4*x)))) \\ G. C. Greubel, Mar 22 2017
Formula
a(n) = Sum_{k=0..n-1} k*A143953(n,k).
G.f.: z^2*C/[(1-z)^2*sqrt(1-4z)], where C = [1-sqrt(1-4z)]/(2z) is the Catalan function.
a(n) ~ 2^(2*n+1)/(9*sqrt(Pi*n)). - Vaclav Kotesovec, Mar 20 2014
Conjecture: (-n+1)*a(n) +2*(3*n-4)*a(n-1) +(-9*n+13)*a(n-2) +2*(2*n-3)*a(n-3)=0. - R. J. Mathar, Jun 16 2016
Comments