cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A143955 Sum of the altitudes of the leftmost valleys of all Dyck paths of semilength n (if path has no valley, then this altitude is taken to be 0).

Original entry on oeis.org

0, 0, 0, 1, 6, 26, 101, 376, 1377, 5017, 18277, 66727, 244377, 898129, 3312554, 12260129, 45526754, 169588754, 633580634, 2373550184, 8914719134, 33562602134, 126640791884, 478848661898, 1814142235028, 6885560250148
Offset: 0

Views

Author

Emeric Deutsch, Oct 14 2008

Keywords

Comments

The positive terms form the partial sums of A000344.

Examples

			a(4)=6 because the Dyck paths of semilength 4 with leftmost valley at a positive altitude are UUDUDDUD, UUDUDUDD, UUDUUDDD, UUUDDUDD and UUUDUDDD, where U=(1,1) and D=(1,-1); these altitudes are 1, 1, 1, 1 and 2, respectively.
		

Crossrefs

Programs

  • Maple
    C:=((1-sqrt(1-4*z))*1/2)/z: G:=z^3*C^5/(1-z): Gser:=series(G,z=0,32): seq(coeff(Gser,z,n),n=0..27);
  • Mathematica
    CoefficientList[Series[x^3 ((1 - (1 - 4 x)^(1/2))/(2 x))^5/(1 - x), {x, 0, 40}], x] (* Vaclav Kotesovec, Mar 21 2014 *)
  • Maxima
    a(n):=5*sum(binomial(2*k,k-2)/(k+3),k,2,n-1); /* Vladimir Kruchinin, Mar 15 2016 */
    
  • Python
    from functools import cache
    @cache
    def B(n, k):
        if n <= 0 or k <= 0: return 0
        if n == k: return 1
        return B(n - 1, k) + B(n, k - 1)
    def A143955(k):
        return B(k + 3, k - 2)
    print([A143955(n) for n in range(26)]) # Peter Luschny, May 15 2022

Formula

a(n) = Sum_{k>=0} k*A097607(n,k).
G.f.: z^3*C^5/(1-z), where C=(1-sqrt(1-4*z))/(2*z) is the generating function of the Catalan numbers (A000108).
Conjecture: (n+2)*a(n) -4*(2*n+1)*a(n-1) +2*(10*n-9)*a(n-2) +17*(2-n)*a(n-3) +2*(2*n-7)*a(n-4)=0. - R. J. Mathar, Jul 24 2012
a(n) ~ 5*4^n/(3*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 21 2014
a(n) = 5*Sum_{k=2..n-1}(binomial(2*k,k-2)/(k+3)). - Vladimir Kruchinin, Mar 15 2016