A143955 Sum of the altitudes of the leftmost valleys of all Dyck paths of semilength n (if path has no valley, then this altitude is taken to be 0).
0, 0, 0, 1, 6, 26, 101, 376, 1377, 5017, 18277, 66727, 244377, 898129, 3312554, 12260129, 45526754, 169588754, 633580634, 2373550184, 8914719134, 33562602134, 126640791884, 478848661898, 1814142235028, 6885560250148
Offset: 0
Keywords
Examples
a(4)=6 because the Dyck paths of semilength 4 with leftmost valley at a positive altitude are UUDUDDUD, UUDUDUDD, UUDUUDDD, UUUDDUDD and UUUDUDDD, where U=(1,1) and D=(1,-1); these altitudes are 1, 1, 1, 1 and 2, respectively.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
Programs
-
Maple
C:=((1-sqrt(1-4*z))*1/2)/z: G:=z^3*C^5/(1-z): Gser:=series(G,z=0,32): seq(coeff(Gser,z,n),n=0..27);
-
Mathematica
CoefficientList[Series[x^3 ((1 - (1 - 4 x)^(1/2))/(2 x))^5/(1 - x), {x, 0, 40}], x] (* Vaclav Kotesovec, Mar 21 2014 *)
-
Maxima
a(n):=5*sum(binomial(2*k,k-2)/(k+3),k,2,n-1); /* Vladimir Kruchinin, Mar 15 2016 */
-
Python
from functools import cache @cache def B(n, k): if n <= 0 or k <= 0: return 0 if n == k: return 1 return B(n - 1, k) + B(n, k - 1) def A143955(k): return B(k + 3, k - 2) print([A143955(n) for n in range(26)]) # Peter Luschny, May 15 2022
Formula
a(n) = Sum_{k>=0} k*A097607(n,k).
G.f.: z^3*C^5/(1-z), where C=(1-sqrt(1-4*z))/(2*z) is the generating function of the Catalan numbers (A000108).
Conjecture: (n+2)*a(n) -4*(2*n+1)*a(n-1) +2*(10*n-9)*a(n-2) +17*(2-n)*a(n-3) +2*(2*n-7)*a(n-4)=0. - R. J. Mathar, Jul 24 2012
a(n) ~ 5*4^n/(3*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 21 2014
a(n) = 5*Sum_{k=2..n-1}(binomial(2*k,k-2)/(k+3)). - Vladimir Kruchinin, Mar 15 2016
Comments