A144004 E.g.f. A(x) satisfies: A(x) = 1 + Series_Reversion( Integral 1/A(x)^4 dx ).
1, 1, 4, 44, 856, 24664, 958592, 47463936, 2881313024, 208638075392, 17654019768320, 1717961286944768, 189836122499649536, 23574107397852049408, 3261667682403085852672, 499151625979680748978176
Offset: 0
Keywords
Examples
E.g.f.: A(x) = 1 + x + 4*x^2/2! + 44*x^3/3! + 856*x^4/4! + 24664*x^5/5! + 958592*x^6/6! + 47463936*x^7/7! + 2881313024*x^8/8! + ...
Programs
-
PARI
{a(n) = my(A=1+x+x*O(x^n)); for(i=0,n, A = 1 + serreverse(intformal(1/A^4))); n!*polcoef(A,n)} for(n=0,20,print1(a(n),", "))
Formula
E.g.f. A(x) satisfies: A'(x) = A(A(x) - 1)^4. - Paul D. Hanna, Sep 07 2024