A144018 Triangle T(n,k), n >= 1, 1 <= k <= n, read by rows, where sequence a_k of column k has a_k(0)=0, followed by (k+1)-fold 1 and a_k(n) shifts k places left under Euler transform.
1, 1, 1, 2, 1, 1, 4, 2, 1, 1, 9, 3, 2, 1, 1, 20, 6, 3, 2, 1, 1, 48, 10, 5, 3, 2, 1, 1, 115, 20, 8, 5, 3, 2, 1, 1, 286, 36, 14, 7, 5, 3, 2, 1, 1, 719, 72, 23, 12, 7, 5, 3, 2, 1, 1, 1842, 137, 40, 18, 11, 7, 5, 3, 2, 1, 1, 4766, 275, 69, 30, 16, 11, 7, 5, 3, 2, 1, 1, 12486, 541, 121, 47, 25, 15, 11, 7, 5, 3, 2, 1, 1
Offset: 1
Examples
T(5,1) = ([1,2,4]*[1,1,4] + [1]*[1]*4 + [1,2]*[1,1]*2 + [1,3]*[1,2]*1)/4 = 36/4 = 9. Triangle begins: 1; 1, 1; 2, 1, 1; 4, 2, 1, 1; 9, 3, 2, 1, 1; 20, 6, 3, 2, 1, 1; 48, 10, 5, 3, 2, 1, 1; 115, 20, 8, 5, 3, 2, 1, 1; 286, 36, 14, 7, 5, 3, 2, 1, 1; 719, 72, 23, 12, 7, 5, 3, 2, 1, 1;
Links
- Alois P. Heinz, Rows n = 1..141, flattened
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
- N. J. A. Sloane, Transforms
Crossrefs
Programs
-
Maple
etrk:= proc(p) proc(n, k) option remember; `if`(n=0, 1, add(add(d*p(d, k), d=numtheory[divisors](j))* procname(n-j, k), j=1..n)/n) end end: B:= etrk(T): T:= (n, k)-> `if`(n<=k, `if`(n=0, 0, 1), B(n-k, k)): seq(seq(T(n, k), k=1..n), n=1..14);
-
Mathematica
etrk[p_] := Module[{f}, f[n_, k_] := f[n, k] = If[n == 0, 1, (Sum[Sum[d*p[d, k], {d, Divisors[j]}]*f[n-j, k], {j, 1, n-1}] + Sum[d*p[d, k], {d, Divisors[n]}])/n]; f]; b = etrk[t]; t[n_, k_] := If[n <= k, If[n == 0, 0, 1], b[n-k, k]]; Table[t[n, k], {n, 1, 13}, {k, 1, n}] // Flatten (* Jean-François Alcover, Aug 01 2013, after Alois P. Heinz *)