cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A007562 Number of planted trees where non-root, non-leaf nodes an even distance from root are of degree 2.

Original entry on oeis.org

1, 1, 1, 2, 3, 6, 10, 20, 36, 72, 137, 275, 541, 1098, 2208, 4521, 9240, 19084, 39451, 82113, 171240, 358794, 753460, 1587740, 3353192, 7100909, 15067924, 32044456, 68272854, 145730675, 311575140, 667221030, 1430892924, 3072925944, 6607832422, 14226665499
Offset: 1

Views

Author

Keywords

Comments

There is no planted tree on one node by definition.
Column k=2 of A144018. - Alois P. Heinz, Oct 17 2012
It appears that a(n) is also the number of locally non-intersecting unlabeled rooted trees with n nodes, where a tree is locally non-intersecting if the branches directly under of any non-leaf node have empty intersection. - Gus Wiseman, Aug 22 2018

Examples

			G.f. = x + x^2 + x^3 + 2*x^4 + 3*x^5 + 6*x^6 + 10*x^7 + 20*x^8 + 36*x^9 + ...
From _Joerg Arndt_, Jun 23 2014: (Start)
The a(8) = 20 such trees have the following level sequences:
01:  [ 0 1 2 3 4 3 2 1 ]
02:  [ 0 1 2 3 3 3 2 1 ]
03:  [ 0 1 2 3 3 2 2 1 ]
04:  [ 0 1 2 3 3 2 1 1 ]
05:  [ 0 1 2 3 2 3 2 1 ]
06:  [ 0 1 2 3 2 2 2 1 ]
07:  [ 0 1 2 3 2 2 1 1 ]
08:  [ 0 1 2 3 2 1 2 1 ]
09:  [ 0 1 2 3 2 1 1 1 ]
10:  [ 0 1 2 2 2 2 2 1 ]
11:  [ 0 1 2 2 2 2 1 1 ]
12:  [ 0 1 2 2 2 1 2 1 ]
13:  [ 0 1 2 2 2 1 1 1 ]
14:  [ 0 1 2 2 1 2 2 1 ]
15:  [ 0 1 2 2 1 2 1 1 ]
16:  [ 0 1 2 2 1 1 1 1 ]
17:  [ 0 1 2 1 2 1 2 1 ]
18:  [ 0 1 2 1 2 1 1 1 ]
19:  [ 0 1 2 1 1 1 1 1 ]
20:  [ 0 1 1 1 1 1 1 1 ]
Successive levels change by at most 1 and the last level is 1, compare to the example in A000081.
(End)
From _Gus Wiseman_, Aug 22 2018: (Start)
The a(7) = 10 locally non-intersecting trees:
  (o(o(oo)))
  (o(oo(o)))
  (o(oooo))
  (oo(o(o)))
  (oo(ooo))
  (o(o)(oo))
  (ooo(oo))
  (oo(o)(o))
  (oooo(o))
  (oooooo)
(End)
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    with(numtheory): etr:= proc(p) local b; b:= proc(n) option remember; if n=0 then 1 else (add(d*p(d), d=divisors(n)) +add(add(d*p(d), d= divisors(j)) *b(n-j), j=1..n-1))/n fi end end: b:= etr(a): a:= n-> `if`(n<=1, n, b(n-2)): seq(a(n), n=1..40);  # Alois P. Heinz, Sep 06 2008
  • Mathematica
    etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, (Sum[ Sum[ d*p[d], {d, Divisors[j]}]*b[n-j], {j, 1, n-1}] + Sum[ d*p[d], {d, Divisors[n]}])/n]; b]; b = etr[a]; a[n_] := If[n <= 1, n, b[n-2]]; Table[a[n], {n, 1, 36}] (* Jean-François Alcover, Aug 01 2013, after Alois P. Heinz *)
    purt[n_]:=If[n==1,{{}},Join@@Table[Select[Union[Sort/@Tuples[purt/@ptn]],Intersection@@#=={}&],{ptn,IntegerPartitions[n-1]}]];
    Table[Length[purt[n]],{n,10}] (* Gus Wiseman, Aug 22 2018 *)
  • PARI
    {a(n) = local(A); if( n<2, n>0, A = x / (1 - x) + O(x^n); for(k=2, n-2, A /= (1 - x^k + O(x^n))^polcoeff(A, k-1)); polcoeff(A, n-1))}; /* Michael Somos, Oct 06 2003 */

Formula

Shifts left 2 places under Euler transform.
G.f.: x + x^2 / (Product_{k>0} (1 - x^k)^a(k)). - Michael Somos, Oct 06 2003
a(n) ~ c * d^n / n^(3/2), where d = 2.246066877341161662499621547921... and c = 0.68490297576105466417608032... . - Vaclav Kotesovec, Jun 23 2014
G.f. A(x) satisfies: A(x) = x + x^2 * exp(A(x) + A(x^2)/2 + A(x^3)/3 + A(x^4)/4 + ...). - Ilya Gutkovskiy, Jun 11 2021

Extensions

Better description from Christian G. Bower, May 15 1998

A316074 Sequence a_k of column k shifts left k places under Weigh transform and equals signum(n) for n=1, 1<=k<=n, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 6, 2, 2, 1, 1, 1, 12, 4, 2, 2, 1, 1, 1, 25, 6, 3, 2, 2, 1, 1, 1, 52, 10, 5, 3, 2, 2, 1, 1, 1, 113, 17, 7, 4, 3, 2, 2, 1, 1, 1, 247, 29, 10, 6, 4, 3, 2, 2, 1, 1, 1, 548, 51, 17, 8, 5, 4, 3, 2, 2, 1, 1, 1, 1226, 89, 26, 12, 7, 5, 4, 3, 2, 2, 1, 1, 1
Offset: 1

Views

Author

Alois P. Heinz, Jun 23 2018

Keywords

Examples

			Triangle T(n,k) begins:
    1;
    1,  1;
    1,  1, 1;
    2,  1, 1, 1;
    3,  2, 1, 1, 1;
    6,  2, 2, 1, 1, 1;
   12,  4, 2, 2, 1, 1, 1;
   25,  6, 3, 2, 2, 1, 1, 1;
   52, 10, 5, 3, 2, 2, 1, 1, 1;
  113, 17, 7, 4, 3, 2, 2, 1, 1, 1;
		

Crossrefs

T(2n,n) gives A000009.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(T(i, k), j)*b(n-i*j, i-1, k), j=0..n/i)))
        end:
    T:= (n, k)-> `if`(n
    				
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[T[i, k], j]*b[n - i*j, i - 1, k], {j, 0, n/i}]]];
    T[n_, k_] := If[n < k, Sign[n], b[n - k, n - k, k]];
    Table[T[n, k], {n, 1, 16}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 10 2018, after Alois P. Heinz *)

A218020 Shifts 3 places left under Euler transform with a(0)=0 and a(n)=1 for n < 3.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 3, 5, 8, 14, 23, 40, 69, 121, 212, 378, 672, 1208, 2177, 3946, 7173, 13104, 23995, 44103, 81261, 150149, 278054, 516141, 959952, 1788950, 3339656, 6245177, 11696510, 21938857, 41206395, 77496891, 145926374, 275098857, 519181163, 980848600
Offset: 0

Views

Author

Alois P. Heinz, Oct 18 2012

Keywords

Crossrefs

Column k=3 of A144018.
Cf. A316075.

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; `if`(n=0, 1,
          (add(add(d*a(d), d=divisors(j)) *b(n-j), j=1..n))/n)
        end:
    a:= n-> `if`(n<3, signum(n), b(n-3)):
    seq(a(n), n=0..40);
  • Mathematica
    b[n_] := b[n] = If[n == 0, 1, (Sum[Sum[d*a[d], {d, Divisors[j]}]*b[n - j], {j, 1, n }])/n]; a[0] = 0; a[1] = a[2] = 1; a[n_] := b[n - 3]; Table[a[n], {n, 0, 39}] (* Jean-François Alcover, Aug 01 2013, after Alois P. Heinz *)

Formula

a(n) ~ c * d^n / n^(3/2), where d = 1.964293016979213611214370656... and c = 0.8776048696248050091050307... . - Vaclav Kotesovec, Jun 23 2014
G.f.: x + x^2 + x^3 / Product_{n>=1} (1 - x^n)^a(n). - Ilya Gutkovskiy, May 08 2019

A218021 Shifts 4 places left under Euler transform with a(0)=0 and a(n)=1 for n < 4.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 2, 3, 5, 7, 12, 18, 30, 47, 78, 125, 209, 341, 571, 946, 1592, 2663, 4503, 7594, 12898, 21891, 37334, 63691, 109039, 186816, 320913, 551829, 950842, 1640149, 2833866, 4901658, 8490019, 14720477, 25553525, 44401638, 77232183, 134457819
Offset: 0

Views

Author

Alois P. Heinz, Oct 18 2012

Keywords

Crossrefs

Column k=4 of A144018.
Cf. A316076.

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; `if`(n=0, 1,
          (add(add(d*a(d), d= divisors(j)) *b(n-j), j=1..n))/n)
        end:
    a:= n-> `if`(n<4, signum(n), b(n-4)):
    seq(a(n), n=0..45);
  • Mathematica
    b[n_] := b[n] = If[n == 0, 1, (Sum[Sum[d*a[d], {d, Divisors[j]}]*b[n - j], {j, 1, n }])/n]; a[n_] := If[n < 4, Sign[n], b[n - 4]]; Table[a[n], {n, 0, 41}] (* Jean-François Alcover, Aug 01 2013, after Alois P. Heinz *)

Formula

a(n) ~ c * d^n / n^(3/2), where d = 1.8065918193702780027972... and c = 1.041173202249532389463... . - Vaclav Kotesovec, Jun 23 2014
G.f.: x + x^2 + x^3 + x^4 / Product_{n>=1} (1 - x^n)^a(n). - Ilya Gutkovskiy, May 08 2019

A218022 Shifts 5 places left under Euler transform with a(0)=0 and a(n)=1 for n<5.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 2, 3, 5, 7, 11, 16, 25, 38, 59, 91, 143, 223, 352, 555, 881, 1399, 2234, 3569, 5726, 9197, 14816, 23901, 38650, 62583, 101535, 164948, 268398, 437268, 713379, 1165156, 1905348, 3119012, 5111199, 8383837, 13765016, 22619804, 37202634
Offset: 0

Views

Author

Alois P. Heinz, Oct 18 2012

Keywords

Crossrefs

Column k=5 of A144018.
Cf. A316077.

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; `if`(n=0, 1,
          (add(add(d*a(d), d= divisors(j)) *b(n-j), j=1..n))/n)
        end:
    a:= n-> `if`(n<5, signum(n), b(n-5)):
    seq(a(n), n=0..45);

Formula

G.f.: x + x^2 + x^3 + x^4 + x^5 / Product_{n>=1} (1 - x^n)^a(n). - Ilya Gutkovskiy, May 08 2019

A218023 Shifts 6 places left under Euler transform with a(0)=0 and a(n)=1 for n<6.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 2, 3, 5, 7, 11, 15, 23, 33, 50, 73, 112, 166, 254, 383, 587, 891, 1371, 2095, 3232, 4970, 7689, 11878, 18435, 28589, 44486, 69225, 107985, 168510, 263473, 412172, 645798, 1012516, 1589480, 2496956, 3926743, 6179504, 9733649, 15342313
Offset: 0

Views

Author

Alois P. Heinz, Oct 18 2012

Keywords

Crossrefs

Column k=6 of A144018.
Cf. A316078.

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; `if`(n=0, 1,
          (add(add(d*a(d), d= divisors(j)) *b(n-j), j=1..n))/n)
        end:
    a:= n-> `if`(n<6, signum(n), b(n-6)):
    seq(a(n), n=0..50);

Formula

G.f.: x + x^2 + x^3 + x^4 + x^5 + x^6 / Product_{n>=1} (1 - x^n)^a(n). - Ilya Gutkovskiy, May 08 2019

A218024 Shifts 7 places left under Euler transform with a(0)=0 and a(n)=1 for n<7.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 5, 7, 11, 15, 22, 31, 45, 64, 94, 136, 200, 294, 435, 643, 956, 1420, 2117, 3157, 4721, 7064, 10597, 15909, 23933, 36038, 54356, 82059, 124056, 187707, 284351, 431114, 654288, 993780, 1510785, 2298471, 3499653, 5332313, 8130576
Offset: 0

Views

Author

Alois P. Heinz, Oct 18 2012

Keywords

Crossrefs

Column k=7 of A144018.
Cf. A316079.

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; `if`(n=0, 1,
          (add(add(d*a(d), d=divisors(j))*b(n-j), j=1..n))/n)
        end:
    a:= n-> `if`(n<7, signum(n), b(n-7)):
    seq(a(n), n=0..50);

Formula

G.f.: x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 / Product_{n>=1} (1 - x^n)^a(n). - Ilya Gutkovskiy, May 08 2019

A218025 Shifts 8 places left under Euler transform with a(0)=0 and a(n)=1 for n<8.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 43, 59, 85, 118, 170, 241, 349, 500, 728, 1051, 1534, 2226, 3252, 4735, 6929, 10117, 14829, 21715, 31893, 46828, 68920, 101442, 149589, 220650, 325939, 481659, 712605, 1054747, 1562670, 2316296, 3436200
Offset: 0

Views

Author

Alois P. Heinz, Oct 18 2012

Keywords

Crossrefs

Column k=8 of A144018.
Cf. A316080.

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; `if`(n=0, 1,
          (add(add(d*a(d), d=divisors(j))*b(n-j), j=1..n))/n)
        end:
    a:= n-> `if`(n<8, signum(n), b(n-8)):
    seq(a(n), n=0..50);

Formula

G.f.: x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 / Product_{n>=1} (1 - x^n)^a(n). - Ilya Gutkovskiy, May 08 2019

A218026 Shifts 9 places left under Euler transform with a(0)=0 and a(n)=1 for n<9.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 57, 80, 109, 152, 211, 296, 415, 588, 832, 1185, 1689, 2413, 3449, 4940, 7073, 10141, 14544, 20880, 29991, 43131, 62064, 89417, 128925, 186090, 268808, 388677, 562381, 814393, 1180070, 1711131
Offset: 0

Views

Author

Alois P. Heinz, Oct 18 2012

Keywords

Crossrefs

Column k=9 of A144018.
Cf. A316081.

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; `if`(n=0, 1,
          (add(add(d*a(d), d=divisors(j)) *b(n-j), j=1..n))/n)
        end:
    a:= n-> `if`(n<9, signum(n), b(n-9)):
    seq(a(n), n=0..60);

Formula

G.f.: x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 / Product_{n>=1} (1 - x^n)^a(n). - Ilya Gutkovskiy, May 08 2019

A218027 Shifts 10 places left under Euler transform with a(0)=0 and a(n)=1 for n<10.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 78, 104, 143, 193, 266, 362, 503, 693, 969, 1349, 1896, 2656, 3746, 5267, 7436, 10476, 14798, 20869, 29491, 41635, 58878, 83234, 117841, 166851, 236568, 335526, 476451, 676868, 962566
Offset: 0

Views

Author

Alois P. Heinz, Oct 18 2012

Keywords

Crossrefs

Column k=10 of A144018.
Cf. A316082.

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; `if`(n=0, 1,
          (add(add(d*a(d), d=divisors(j)) *b(n-j), j=1..n))/n)
        end:
    a:= n-> `if`(n<10, signum(n), b(n-10)):
    seq(a(n), n=0..60);

Formula

G.f.: x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^10 / Product_{n>=1} (1 - x^n)^a(n). - Ilya Gutkovskiy, May 08 2019
Showing 1-10 of 10 results.