cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A144018 Triangle T(n,k), n >= 1, 1 <= k <= n, read by rows, where sequence a_k of column k has a_k(0)=0, followed by (k+1)-fold 1 and a_k(n) shifts k places left under Euler transform.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 4, 2, 1, 1, 9, 3, 2, 1, 1, 20, 6, 3, 2, 1, 1, 48, 10, 5, 3, 2, 1, 1, 115, 20, 8, 5, 3, 2, 1, 1, 286, 36, 14, 7, 5, 3, 2, 1, 1, 719, 72, 23, 12, 7, 5, 3, 2, 1, 1, 1842, 137, 40, 18, 11, 7, 5, 3, 2, 1, 1, 4766, 275, 69, 30, 16, 11, 7, 5, 3, 2, 1, 1, 12486, 541, 121, 47, 25, 15, 11, 7, 5, 3, 2, 1, 1
Offset: 1

Views

Author

Alois P. Heinz, Sep 07 2008

Keywords

Examples

			T(5,1) = ([1,2,4]*[1,1,4] + [1]*[1]*4 + [1,2]*[1,1]*2 + [1,3]*[1,2]*1)/4 = 36/4 = 9.
Triangle begins:
    1;
    1,  1;
    2,  1,  1;
    4,  2,  1,  1;
    9,  3,  2,  1, 1;
   20,  6,  3,  2, 1, 1;
   48, 10,  5,  3, 2, 1, 1;
  115, 20,  8,  5, 3, 2, 1, 1;
  286, 36, 14,  7, 5, 3, 2, 1, 1;
  719, 72, 23, 12, 7, 5, 3, 2, 1, 1;
		

Crossrefs

T(2n,n) gives A000041(n).
Cf. A316074.

Programs

  • Maple
    etrk:= proc(p) proc(n, k) option remember; `if`(n=0, 1,
             add(add(d*p(d, k), d=numtheory[divisors](j))*
             procname(n-j, k), j=1..n)/n)
           end end:
    B:= etrk(T):
    T:= (n, k)-> `if`(n<=k, `if`(n=0, 0, 1), B(n-k, k)):
    seq(seq(T(n, k), k=1..n), n=1..14);
  • Mathematica
    etrk[p_] := Module[{f}, f[n_, k_] := f[n, k] = If[n == 0, 1, (Sum[Sum[d*p[d, k], {d, Divisors[j]}]*f[n-j, k], {j, 1, n-1}] + Sum[d*p[d, k], {d, Divisors[n]}])/n]; f]; b = etrk[t]; t[n_, k_] := If[n <= k, If[n == 0, 0, 1], b[n-k, k]]; Table[t[n, k], {n, 1, 13}, {k, 1, n}] // Flatten (* Jean-François Alcover, Aug 01 2013, after Alois P. Heinz *)

A316075 Sequence shifts left three places under Weigh transform with a(n) = signum(n) for n<3.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 2, 2, 3, 5, 7, 10, 17, 26, 40, 65, 104, 166, 272, 442, 720, 1186, 1954, 3222, 5346, 8881, 14778, 24668, 41254, 69088, 115959, 194925, 328123, 553200, 933944, 1578614, 2671656, 4526654, 7677736, 13035809, 22154806, 37687152, 64165838
Offset: 0

Views

Author

Alois P. Heinz, Jun 23 2018

Keywords

Crossrefs

Column k=3 of A316074.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(a(i), j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> (k-> `if`(n
    				

Formula

G.f.: x + x^2 + x^3 * Product_{n>=1} (1 + x^n)^a(n). - Ilya Gutkovskiy, May 09 2019

A346020 G.f. A(x) satisfies: A(x) = x + x^3 * exp(A(x) + A(x^2)/2 + A(x^3)/3 + A(x^4)/4 + ...).

Original entry on oeis.org

1, 0, 1, 1, 1, 2, 3, 4, 7, 11, 17, 28, 46, 74, 124, 206, 343, 577, 976, 1649, 2808, 4792, 8200, 14073, 24228, 41782, 72246, 125164, 217262, 377784, 658072, 1148006, 2005743, 3509125, 6147422, 10782375, 18934209, 33285291, 58575080, 103181405, 181928014, 321059155
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 01 2021

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<4, [1, 0, 1][n], add(a(n-k)*
           add(d*a(d), d=numtheory[divisors](k)), k=1..n-3)/(n-3))
        end:
    seq(a(n), n=1..42);  # Alois P. Heinz, Jul 01 2021
  • Mathematica
    nmax = 42; A[] = 0; Do[A[x] = x + x^3 Exp[Sum[A[x^k]/k, {k, 1, nmax}]] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] // Rest
    a[1] = 1; a[2] = 0; a[3] = 1; a[n_] := a[n] = (1/(n - 3)) Sum[Sum[d a[d], {d, Divisors[k]}] a[n - k], {k, 1, n - 3}]; Table[a[n], {n, 1, 42}]

Formula

G.f.: x + x^3 / Product_{n>=1} (1 - x^n)^a(n).
a(1) = 1, a(2) = 0, a(3) = 1; a(n) = (1/(n - 3)) * Sum_{k=1..n-3} ( Sum_{d|k} d * a(d) ) * a(n-k).
a(n) ~ c * d^n / n^(3/2), where d = 1.82975393308934955558864748939303527364978309460948926333116466766295641... and c = 0.8335864368398390652263577663136791087027831725508605623969711758177... - Vaclav Kotesovec, Jul 06 2021

A346030 G.f. A(x) satisfies: A(x) = x^2 + x^3 * exp(A(x) + A(x^2)/2 + A(x^3)/3 + A(x^4)/4 + ...).

Original entry on oeis.org

0, 1, 1, 0, 1, 1, 1, 2, 3, 3, 6, 8, 11, 18, 26, 37, 60, 87, 132, 206, 310, 475, 742, 1130, 1759, 2737, 4236, 6618, 10348, 16139, 25350, 39767, 62456, 98401, 155047, 244570, 386639, 611298, 967874, 1534297, 2433584, 3864154, 6141560, 9766908, 15547187, 24766037, 39476846
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 01 2021

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<4, signum(n-1), add(a(n-k)*
           add(d*a(d), d=numtheory[divisors](k)), k=1..n-3)/(n-3))
        end:
    seq(a(n), n=1..47);  # Alois P. Heinz, Jul 01 2021
  • Mathematica
    nmax = 47; A[] = 0; Do[A[x] = x^2 + x^3 Exp[Sum[A[x^k]/k, {k, 1, nmax}]] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] // Rest
    a[1] = 0; a[2] = 1; a[3] = 1; a[n_] := a[n] = (1/(n - 3)) Sum[Sum[d a[d], {d, Divisors[k]}] a[n - k], {k, 1, n - 3}]; Table[a[n], {n, 1, 47}]

Formula

G.f.: x^2 + x^3 / Product_{n>=1} (1 - x^n)^a(n).
a(1) = 0, a(2) = 1, a(3) = 1; a(n) = (1/(n - 3)) * Sum_{k=1..n-3} ( Sum_{d|k} d * a(d) ) * a(n-k).
a(n) ~ c * d^n / n^(3/2), where d = 1.646504994482771446591056040381099740295861136174688956979834656... and c = 0.8402317368556115946120005582458627329843217960728964299829... - Vaclav Kotesovec, Jul 06 2021
Showing 1-4 of 4 results.