cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A316074 Sequence a_k of column k shifts left k places under Weigh transform and equals signum(n) for n=1, 1<=k<=n, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 6, 2, 2, 1, 1, 1, 12, 4, 2, 2, 1, 1, 1, 25, 6, 3, 2, 2, 1, 1, 1, 52, 10, 5, 3, 2, 2, 1, 1, 1, 113, 17, 7, 4, 3, 2, 2, 1, 1, 1, 247, 29, 10, 6, 4, 3, 2, 2, 1, 1, 1, 548, 51, 17, 8, 5, 4, 3, 2, 2, 1, 1, 1, 1226, 89, 26, 12, 7, 5, 4, 3, 2, 2, 1, 1, 1
Offset: 1

Views

Author

Alois P. Heinz, Jun 23 2018

Keywords

Examples

			Triangle T(n,k) begins:
    1;
    1,  1;
    1,  1, 1;
    2,  1, 1, 1;
    3,  2, 1, 1, 1;
    6,  2, 2, 1, 1, 1;
   12,  4, 2, 2, 1, 1, 1;
   25,  6, 3, 2, 2, 1, 1, 1;
   52, 10, 5, 3, 2, 2, 1, 1, 1;
  113, 17, 7, 4, 3, 2, 2, 1, 1, 1;
		

Crossrefs

T(2n,n) gives A000009.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(T(i, k), j)*b(n-i*j, i-1, k), j=0..n/i)))
        end:
    T:= (n, k)-> `if`(n
    				
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[T[i, k], j]*b[n - i*j, i - 1, k], {j, 0, n/i}]]];
    T[n_, k_] := If[n < k, Sign[n], b[n - k, n - k, k]];
    Table[T[n, k], {n, 1, 16}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 10 2018, after Alois P. Heinz *)

A218020 Shifts 3 places left under Euler transform with a(0)=0 and a(n)=1 for n < 3.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 3, 5, 8, 14, 23, 40, 69, 121, 212, 378, 672, 1208, 2177, 3946, 7173, 13104, 23995, 44103, 81261, 150149, 278054, 516141, 959952, 1788950, 3339656, 6245177, 11696510, 21938857, 41206395, 77496891, 145926374, 275098857, 519181163, 980848600
Offset: 0

Views

Author

Alois P. Heinz, Oct 18 2012

Keywords

Crossrefs

Column k=3 of A144018.
Cf. A316075.

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; `if`(n=0, 1,
          (add(add(d*a(d), d=divisors(j)) *b(n-j), j=1..n))/n)
        end:
    a:= n-> `if`(n<3, signum(n), b(n-3)):
    seq(a(n), n=0..40);
  • Mathematica
    b[n_] := b[n] = If[n == 0, 1, (Sum[Sum[d*a[d], {d, Divisors[j]}]*b[n - j], {j, 1, n }])/n]; a[0] = 0; a[1] = a[2] = 1; a[n_] := b[n - 3]; Table[a[n], {n, 0, 39}] (* Jean-François Alcover, Aug 01 2013, after Alois P. Heinz *)

Formula

a(n) ~ c * d^n / n^(3/2), where d = 1.964293016979213611214370656... and c = 0.8776048696248050091050307... . - Vaclav Kotesovec, Jun 23 2014
G.f.: x + x^2 + x^3 / Product_{n>=1} (1 - x^n)^a(n). - Ilya Gutkovskiy, May 08 2019

A346031 G.f. A(x) satisfies: A(x) = x + x^3 * exp(A(x) - A(x^2)/2 + A(x^3)/3 - A(x^4)/4 + ...).

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 2, 1, 1, 4, 4, 3, 9, 14, 12, 22, 43, 49, 66, 130, 186, 234, 406, 663, 884, 1362, 2303, 3347, 4884, 8049, 12478, 18240, 28853, 46075, 69163, 106470, 170305, 262853, 401773, 635780, 998609, 1536093, 2405345, 3801601, 5910267, 9212253, 14548179, 22818301
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 01 2021

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<4, [1, 0, 1][n], add(a(n-k)*add(
         (-1)^(k/d+1)*d*a(d), d=numtheory[divisors](k)), k=1..n-3)/(n-3))
        end:
    seq(a(n), n=1..48);  # Alois P. Heinz, Jul 01 2021
  • Mathematica
    nmax = 48; A[] = 0; Do[A[x] = x + x^3 Exp[Sum[(-1)^(k + 1) A[x^k]/k, {k, 1, nmax}]] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] // Rest
    a[1] = 1; a[2] = 0; a[3] = 1; a[n_] := a[n] = (1/(n - 3)) Sum[Sum[(-1)^(k/d + 1) d a[d], {d, Divisors[k]}] a[n - k], {k, 1, n - 3}]; Table[a[n], {n, 1, 48}]

Formula

G.f.: x + x^3 * Product_{n>=1} (1 + x^n)^a(n).
a(1) = 1, a(2) = 0, a(3) = 1; a(n) = (1/(n - 3)) * Sum_{k=1..n-3} ( Sum_{d|k} (-1)^(k/d+1) * d * a(d) ) * a(n-k).

A346032 G.f. A(x) satisfies: A(x) = x^2 + x^3 * exp(A(x) - A(x^2)/2 + A(x^3)/3 - A(x^4)/4 + ...).

Original entry on oeis.org

0, 1, 1, 0, 1, 1, 0, 2, 1, 1, 4, 2, 4, 9, 4, 14, 20, 15, 43, 48, 55, 127, 127, 199, 363, 379, 684, 1048, 1229, 2263, 3100, 4163, 7288, 9558, 14231, 23222, 30673, 48404, 74113, 101631, 163048, 239282, 343196, 545318, 785139, 1169148, 1818866, 2619072, 3991888, 6079434
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 01 2021

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<4, signum(n-1), add(a(n-k)*add(
         (-1)^(k/d+1)*d*a(d), d=numtheory[divisors](k)), k=1..n-3)/(n-3))
        end:
    seq(a(n), n=1..50);  # Alois P. Heinz, Jul 01 2021
  • Mathematica
    nmax = 50; A[] = 0; Do[A[x] = x^2 + x^3 Exp[Sum[(-1)^(k + 1) A[x^k]/k, {k, 1, nmax}]] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] // Rest
    a[1] = 0; a[2] = 1; a[3] = 1; a[n_] := a[n] = (1/(n - 3)) Sum[Sum[(-1)^(k/d + 1) d a[d], {d, Divisors[k]}] a[n - k], {k, 1, n - 3}]; Table[a[n], {n, 1, 50}]

Formula

G.f.: x^2 + x^3 * Product_{n>=1} (1 + x^n)^a(n).
a(1) = 0, a(2) = 1, a(3) = 1; a(n) = (1/(n - 3)) * Sum_{k=1..n-3} ( Sum_{d|k} (-1)^(k/d+1) * d * a(d) ) * a(n-k).
Showing 1-4 of 4 results.