cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A346020 G.f. A(x) satisfies: A(x) = x + x^3 * exp(A(x) + A(x^2)/2 + A(x^3)/3 + A(x^4)/4 + ...).

Original entry on oeis.org

1, 0, 1, 1, 1, 2, 3, 4, 7, 11, 17, 28, 46, 74, 124, 206, 343, 577, 976, 1649, 2808, 4792, 8200, 14073, 24228, 41782, 72246, 125164, 217262, 377784, 658072, 1148006, 2005743, 3509125, 6147422, 10782375, 18934209, 33285291, 58575080, 103181405, 181928014, 321059155
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 01 2021

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<4, [1, 0, 1][n], add(a(n-k)*
           add(d*a(d), d=numtheory[divisors](k)), k=1..n-3)/(n-3))
        end:
    seq(a(n), n=1..42);  # Alois P. Heinz, Jul 01 2021
  • Mathematica
    nmax = 42; A[] = 0; Do[A[x] = x + x^3 Exp[Sum[A[x^k]/k, {k, 1, nmax}]] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] // Rest
    a[1] = 1; a[2] = 0; a[3] = 1; a[n_] := a[n] = (1/(n - 3)) Sum[Sum[d a[d], {d, Divisors[k]}] a[n - k], {k, 1, n - 3}]; Table[a[n], {n, 1, 42}]

Formula

G.f.: x + x^3 / Product_{n>=1} (1 - x^n)^a(n).
a(1) = 1, a(2) = 0, a(3) = 1; a(n) = (1/(n - 3)) * Sum_{k=1..n-3} ( Sum_{d|k} d * a(d) ) * a(n-k).
a(n) ~ c * d^n / n^(3/2), where d = 1.82975393308934955558864748939303527364978309460948926333116466766295641... and c = 0.8335864368398390652263577663136791087027831725508605623969711758177... - Vaclav Kotesovec, Jul 06 2021
Showing 1-1 of 1 results.