cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A144043 a(2n-1) = 2*prime(n), a(2n) = prime(n) + prime(n+1).

Original entry on oeis.org

4, 5, 6, 8, 10, 12, 14, 18, 22, 24, 26, 30, 34, 36, 38, 42, 46, 52, 58, 60, 62, 68, 74, 78, 82, 84, 86, 90, 94, 100, 106, 112, 118, 120, 122, 128, 134, 138, 142, 144, 146, 152, 158, 162, 166, 172, 178, 186, 194, 198, 202, 204
Offset: 1

Views

Author

Raul Rato (rtrato(AT)yahoo.com), Sep 08 2008

Keywords

Comments

Previous name was "Sum of the middle pair in the n-term sequence 2, 3, 5, ..., prime(n)." - Jon E. Schoenfield, Oct 12 2015
The bisections are the doubled primes (A100484) and the sums of adjacent primes (A001043). - R. J. Mathar, Sep 11 2011

Examples

			4 = sumtwice(2); 5 = sum(2,3); 6 = 2, sumtwice(3), 5, 7; 8 = 2, sum(3,5), 7, 11;
		

Programs

  • MATLAB
    clc clear all aP= [primes(1000)]; qN= numel(aP); kL=[]; %init empty result for nn= 1:qN %Loop to sum the central pairs auxT= ceil((nn+1)/2); auxL= ceil(nn/2); kL= [kL; aP(auxL)+aP(auxT)]; end kL %kL is the result
  • Maple
    A144043 := proc(n) ithprime(ceil((n+1)/2))+ithprime(ceil(n/2)) ; end proc: # R. J. Mathar, Sep 11 2011
  • Mathematica
    With[{p=Prime[Range[50]]},Riffle[2p,ListConvolve[{1,1},p]]] (* Paolo Xausa, Nov 02 2023 *)

Formula

a(2n-1) = 2 prime(n), a(2n) = prime(n) + prime(n+1), n = 1,2,... - Zak Seidov, Jan 15 2014
a(n) = 2*A063934(n-1) for n>2. - Michel Marcus, Oct 13 2015

Extensions

Removed initial terms that regarded 1 as a prime. - R. J. Mathar, Sep 11 2011
Comments edited by Zak Seidov, Jan 15 2014
Name changed (based on formula from Zak Seidov) by Jon E. Schoenfield, Oct 12 2015