cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A144072 Euler transform of powers of 8.

Original entry on oeis.org

1, 8, 100, 1144, 12906, 141848, 1532276, 16290920, 170938483, 1773107760, 18208004664, 185316171472, 1871103319988, 18756665504080, 186798940872312, 1849265718114736, 18207140415436701, 178355043327697976, 1738966407826985884, 16881111732250394440
Offset: 0

Views

Author

Alois P. Heinz, Sep 09 2008

Keywords

Crossrefs

8th column of A144074.
Cf. A001018 (powers of 8).

Programs

  • Maple
    with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; `if`(n=0, 1, add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n) end end: a:=n-> etr(j->8^j)(n): seq(a(n), n=0..40);
  • Mathematica
    nmax = 20; CoefficientList[Series[Product[1/(1-x^j)^(8^j), {j, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 14 2015 *)

Formula

G.f.: Product_{j>0} 1/(1-x^j)^(8^j).
a(n) ~ 8^n * exp(2*sqrt(n) - 1/2 + c) / (2 * sqrt(Pi) * n^(3/4)), where c = Sum_{m>=2} 1/(m*(8^(m-1)-1)) = 0.0772633520042039151361539536110877247158170... . - Vaclav Kotesovec, Mar 14 2015
G.f.: exp(8*Sum_{k>=1} x^k/(k*(1 - 8*x^k))). - Ilya Gutkovskiy, Nov 10 2018