A144105 Primes at the upper end of the gaps mentioned in A144104.
3, 5, 11, 17, 29, 37, 53, 59, 127, 149, 211, 223, 307, 331, 541, 1361, 1693, 1973, 2203, 2503, 2999, 3299, 4327, 4861, 5623, 5779, 5981, 6521, 6947, 7283, 8501, 9587, 10007, 10831, 11777, 12197, 12889, 15727, 16183, 19661, 31469, 34123, 35671, 35729
Offset: 1
Keywords
Examples
Examples for (log(prime(n+1))/log(prime(n)))^n < (1+1/n)^n < e: (log(3)/log(2))^1 = 1.58... < (1+1/1)^1 = 2 < e; (log(1361)/log(1327))^217 = 2.14... < (1+1/217)^217 = 2.712... < e; (log(8501)/log(8467))^1059 = 1.59... < (1+1/1059)^1059 = 2.716... < e; (log(35729)/log(35677))^3795 = 1.69... < (1+1/3795)^3795 = 2.717... < e. - _Daniel Forgues_, Apr 28 2014
Links
- T. D. Noe, Table of n, a(n) for n = 1..176
- A. Kourbatov, Verification of the Firoozbakht conjecture for primes up to four quintillion, arXiv:1503.01744 [math.NT], 2015.
- Nilotpal Kanti Sinha, On a new property of primes that leads to a generalization of Cramer's conjecture, arXiv:1010.1399 [math.NT], 2010.
- Wikipedia, Firoozbakht's conjecture
Comments