cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A144124 P_4(2n+1), the Legendre polynomial of order 4 at 2n+1.

Original entry on oeis.org

1, 321, 2641, 10321, 28401, 63601, 124321, 220641, 364321, 568801, 849201, 1222321, 1706641, 2322321, 3091201, 4036801, 5184321, 6560641, 8194321, 10115601, 12356401, 14950321, 17932641, 21340321, 25212001, 29588001
Offset: 0

Views

Author

Keywords

Comments

Legendre polynomial LP_4(x) = (35*x^4 - 30*x^2 + 3)/8. - Klaus Brockhaus, Nov 21 2009

Crossrefs

Cf. A140870.

Programs

  • Magma
    P := PolynomialRing(IntegerRing()); LP_4:=LegendrePolynomial(4); [ Evaluate(LP_4, 2*n+1): n in [0..25] ]; // Klaus Brockhaus, Nov 21 2009
    
  • Mathematica
    Table[LegendreP[4,2n+1],{n,0,50}] (* N. J. A. Sloane, Nov 17 2009 *)
  • PARI
    a(n)=pollegendre(4,n+n+1) \\ Charles R Greathouse IV, Oct 25 2011

Formula

From Klaus Brockhaus, Nov 21 2009: (Start)
a(n) = 70*n^4 + 140*n^3 + 90*n^2 + 20*n + 1.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) + 1680 for n > 3; a(0)=1, a(1)=321, a(2)=2641, a(3)=10321.
G.f.: (1 + 316*x + 1046*x^2 + 316*x^3 + x^4)/(1-x)^5. (End)

Extensions

Definition corrected by N. J. A. Sloane, Nov 17 2009