A144131 Primes of the form T_4(n), where T_4(x) = 8x^4 - 8x^2 + 1 is the fourth Chebyshev polynomial (of the first kind).
97, 577, 4801, 32257, 79201, 305761, 665857, 1039681, 7380481, 8380417, 10681441, 11995201, 18495361, 42448897, 49980001, 54100801, 63101377, 68001121, 96911041, 110736961, 227143297, 266851201, 296071777, 398240641, 479694337
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A144130.
Programs
-
Maple
T4:= unapply(orthopoly[T](4,x),x): select(isprime, map(T4, [$0..300])); # Robert Israel, Apr 27 2020
-
Mathematica
lst={};Do[p=ChebyshevT[4,n];If[PrimeQ[p],AppendTo[lst,p]],{n,9^3}];lst
-
PARI
select(isprime,vector(100,n,polchebyshev(4,1,n))) \\ Charles R Greathouse IV, May 29 2013
Comments