A144150 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where the e.g.f. of column k is 1+g^(k+1)(x) with g = x-> exp(x)-1.
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 5, 1, 1, 1, 4, 12, 15, 1, 1, 1, 5, 22, 60, 52, 1, 1, 1, 6, 35, 154, 358, 203, 1, 1, 1, 7, 51, 315, 1304, 2471, 877, 1, 1, 1, 8, 70, 561, 3455, 12915, 19302, 4140, 1, 1, 1, 9, 92, 910, 7556, 44590, 146115, 167894, 21147, 1, 1, 1, 10, 117
Offset: 0
Examples
Square array begins: 1, 1, 1, 1, 1, 1, ... 1, 1, 1, 1, 1, 1, ... 1, 2, 3, 4, 5, 6, ... 1, 5, 12, 22, 35, 51, ... 1, 15, 60, 154, 315, 561, ... 1, 52, 358, 1304, 3455, 7556, ...
Links
- Alois P. Heinz, Antidiagonals n = 0..140, flattened
- E. T. Bell, The Iterated Exponential Integers, Annals of Mathematics, 39(3) (1938), 539-557.
- Pierpaolo Natalini and Paolo Emilio Ricci, Higher order Bell polynomials and the relevant integer sequences, in Appl. Anal. Discrete Math. 11 (2017), 327-339.
- Pierpaolo Natalini and Paolo E. Ricci, Integer Sequences Connected with Extensions of the Bell Polynomials, Journal of Integer Sequences, 2017, Vol. 20, #17.10.2.
- Ivar Henning Skau and Kai Forsberg Kristensen, An asymptotic Formula for the iterated exponential Bell Numbers, arXiv:1903.07979 [math.CO], 2019.
- Ivar Henning Skau and Kai Forsberg Kristensen, Sets of iterated Partitions and the Bell iterated Exponential Integers, arXiv:1903.08379 [math.CO], 2019.
- Index entries for sequences related to rooted trees
Crossrefs
Programs
-
Maple
g:= proc(p) local b; b:= proc(n) option remember; if n=0 then 1 else (n-1)! *add(p(k)*b(n-k)/(k-1)!/(n-k)!, k=1..n) fi end end: A:= (n,k)-> (g@@k)(1)(n): seq(seq(A(n, d-n), n=0..d), d=0..12); # second Maple program: A:= proc(n, k) option remember; `if`(n=0 or k=0, 1, add(binomial(n-1, j-1)*A(j, k-1)*A(n-j, k), j=1..n)) end: seq(seq(A(n, d-n), n=0..d), d=0..12); # Alois P. Heinz, Aug 14 2015 # third Maple program: b:= proc(n, t, m) option remember; `if`(t=0, 1, `if`(n=0, b(m, t-1, 0), m*b(n-1, t, m)+b(n-1, t, m+1))) end: A:= (n, k)-> b(n, k, 0): seq(seq(A(n, d-n), n=0..d), d=0..12); # Alois P. Heinz, Aug 04 2021
-
Mathematica
g[k_] := g[k] = Nest[Function[x, E^x - 1], x, k]; a[n_, k_] := SeriesCoefficient[1 + g[k + 1], {x, 0, n}]*n!; Table[a[n - k, k], {n, 0, 12}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Dec 06 2013 *)
-
Python
from sympy.core.cache import cacheit from sympy import binomial @cacheit def A(n, k): return 1 if n==0 or k==0 else sum([binomial(n - 1, j - 1)*A(j, k - 1)*A(n - j, k) for j in range(1, n + 1)]) for n in range(51): print([A(k, n - k) for k in range(n + 1)]) # Indranil Ghosh, Aug 07 2017
Formula
E.g.f. of column k: 1 + g^(k+1)(x) with g = x-> exp(x)-1.
Column k+1 is Stirling transform of column k.
Comments