cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A144209 Triangle T(n,k), n>=0, 0<=k<=n, read by rows: T(n,k) = number of simple graphs on n labeled nodes with k edges where each maximally connected subgraph consists of a single node or has a unique cycle of length 4.

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 3, 1, 0, 0, 0, 15, 60, 1, 0, 0, 0, 45, 360, 1080, 1, 0, 0, 0, 105, 1260, 7560, 20580, 1, 0, 0, 0, 210, 3360, 30240, 164640, 430080, 1, 0, 0, 0, 378, 7560, 90720, 740880, 3873240, 9920232, 1, 0, 0, 0, 630, 15120, 226800, 2469600, 19367460, 99406440, 252000000
Offset: 0

Views

Author

Alois P. Heinz, Sep 14 2008

Keywords

Examples

			T(5,4) = 15 = 5*3, because there are 5 possibilities for a single node and T(4,4) = 3:
.1-2. .1-2. .1.2.
.|.|. ..X.. .|X|.
.3-4. .3-4. .3.4.
Triangle begins:
1;
1, 0;
1, 0, 0;
1, 0, 0, 0;
1, 0, 0, 0,  3;
1, 0, 0, 0, 15, 60;
		

Crossrefs

Columns 0, 1+2+3, 4 give: A000012, A000004, A050534.
Main diagonal gives A065889.
Row sums give A144210.
Cf. A007318.

Programs

  • Maple
    T:= proc(n,k) option remember; if k=0 then 1 elif k<0 or n
    				
  • Mathematica
    T[n_, k_] := T[n, k] = Which[k == 0, 1, k < 0 || n < k, 0, k == n, 3*Binomial[n-1, 3]*n^(n-4), True, T[n-1, k] + Sum[Binomial[n-1, j]*T[j+1, j+1]*T[n-1-j, k-j-1], {j, 3, k-1}]]; Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Aug 29 2014, translated from Maple *)

Formula

T(n,0) = 1, T(n,k) = 0 if k<0 or n

A144212 Triangle T(n,k), n>=3, 3<=k<=n, read by rows: T(n,k) = number of simple graphs on n labeled nodes, where each maximally connected subgraph consists of a single node or has a unique cycle of length k.

Original entry on oeis.org

2, 17, 4, 221, 76, 13, 3261, 1486, 433, 61, 54801, 29506, 11593, 2941, 361, 1049235, 628531, 296353, 102481, 23041, 2521, 22695027, 14633011, 7795873, 3270961, 1010881, 204121, 20161, 548904831, 373486051, 217126225, 104038201, 39355201
Offset: 3

Author

Alois P. Heinz, Sep 14 2008

Keywords

Examples

			T(4,4) = 4, because there are 4 simple graphs on 4 labeled nodes, where each maximally connected subgraph consists of a single node or has a unique cycle of length 4:
.1.2. .1-2. .1-2. .1.2.
..... .|.|. ..X.. .|X|.
.3.4. .3-4. .3-4. .3.4.
Triangle begins:
        2;
       17,     4;
      221,    76,    13;
     3261,  1486,   433,   61;
    54801, 29506, 11593, 2941, 361;
		

Crossrefs

Columns k=3, 4 give: A144208, A144210. Diagonal gives: A139149. Cf. A053507, A065889, A098909, A144207, A144209, A007318, A000142.

Programs

  • Maple
    B:= proc(n,c,k) option remember; if c=0 then 1 elif c<0 or n add(B(n,c,k), c=0..n): seq(seq(T(n,k), k=3..n), n=3..11);
  • Mathematica
    B[n_, c_, k_] := B[n, c, k] = Which[c == 0, 1, c<0 || nJean-François Alcover, Jan 21 2014, translated from Alois P. Heinz's Maple code *)

Formula

See program.
Showing 1-2 of 2 results.