cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A144210 Number of simple graphs on n labeled nodes, where each maximally connected subgraph consists of a single node or has a unique cycle of length 4; also row sums of A144209.

Original entry on oeis.org

1, 1, 1, 1, 4, 76, 1486, 29506, 628531, 14633011, 373486051, 10423892971, 316702467496, 10422938835196, 369779598658786, 14078057663869606, 572776958092098166, 24810200300393961286, 1140218754844983978646
Offset: 0

Views

Author

Alois P. Heinz, Sep 14 2008

Keywords

Examples

			a(4) = 4, because there are 4 simple graphs on 4 labeled nodes, where each maximally connected subgraph consists of a single node or has a unique cycle of length 4:
.1.2. .1-2. .1-2. .1.2.
..... .|.|. ..X.. .|X|.
.3.4. .3-4. .3-4. .3.4.
		

Crossrefs

A column of A144212. Cf. A144209.

Programs

  • Maple
    T:= proc(n,k) option remember; if k=0 then 1 elif k<0 or n add(T(n,k), k=0..n): seq(a(n), n=0..23);
  • Mathematica
    T[n_, k_] := T[n, k] = Which[k == 0, 1, k<0 || nJean-François Alcover, Dec 02 2014, translated from Maple *)

Formula

a(n) = Sum_{k=0..n} A144209(n,k).
a(n) ~ c * n^(n-1), where c = 0.7519160836660874254... . - Vaclav Kotesovec, Sep 10 2014

A065889 a(n) = number of unicyclic connected simple graphs whose cycle has length 4.

Original entry on oeis.org

3, 60, 1080, 20580, 430080, 9920232, 252000000, 7015381560, 212840939520, 6998969586180, 248180493969408, 9445533398437500, 384213343210045440, 16639691095281974160, 764619269867445288960, 37163398969133506235952, 1905131520000000000000000
Offset: 4

Views

Author

Len Smiley, Nov 27 2001

Keywords

Crossrefs

A065888 ( = 2*A065889) counts sagittal graphs with one cycle (length 4).
A column of A098909, A053507.
Main diagonal of A144209.
Cf. A053508.

Programs

  • GAP
    List([4..25], n-> 12*Binomial(n,4)*n^(n-5)); # G. C. Greubel, May 16 2019
  • Magma
    [12*Binomial(n,4)*n^(n-5) : n in [4..25]]; // G. C. Greubel, May 16 2019
    
  • Mathematica
    Table[12*Binomial[n,4]*n^(n-5), {n,4,25}] (* G. C. Greubel, May 16 2019 *)
  • PARI
    {a(n) = 12*binomial(n,4)*n^(n-5)}; \\ G. C. Greubel, May 16 2019
    
  • Sage
    [12*binomial(n,4)*n^(n-5) for n in (4..25)] # G. C. Greubel, May 16 2019
    

Formula

E.g.f.: T^4/8, where T = T(x) is Euler's tree function (see A000169).
a(n) = (n-1)*(n-2)*(n-3)*n^(n-4)/2. - Vladeta Jovovic, Oct 26 2004
a(n) = 3 * A053508(n). - Alois P. Heinz, Jan 09 2025

A144212 Triangle T(n,k), n>=3, 3<=k<=n, read by rows: T(n,k) = number of simple graphs on n labeled nodes, where each maximally connected subgraph consists of a single node or has a unique cycle of length k.

Original entry on oeis.org

2, 17, 4, 221, 76, 13, 3261, 1486, 433, 61, 54801, 29506, 11593, 2941, 361, 1049235, 628531, 296353, 102481, 23041, 2521, 22695027, 14633011, 7795873, 3270961, 1010881, 204121, 20161, 548904831, 373486051, 217126225, 104038201, 39355201
Offset: 3

Views

Author

Alois P. Heinz, Sep 14 2008

Keywords

Examples

			T(4,4) = 4, because there are 4 simple graphs on 4 labeled nodes, where each maximally connected subgraph consists of a single node or has a unique cycle of length 4:
.1.2. .1-2. .1-2. .1.2.
..... .|.|. ..X.. .|X|.
.3.4. .3-4. .3-4. .3.4.
Triangle begins:
        2;
       17,     4;
      221,    76,    13;
     3261,  1486,   433,   61;
    54801, 29506, 11593, 2941, 361;
		

Crossrefs

Columns k=3, 4 give: A144208, A144210. Diagonal gives: A139149. Cf. A053507, A065889, A098909, A144207, A144209, A007318, A000142.

Programs

  • Maple
    B:= proc(n,c,k) option remember; if c=0 then 1 elif c<0 or n add(B(n,c,k), c=0..n): seq(seq(T(n,k), k=3..n), n=3..11);
  • Mathematica
    B[n_, c_, k_] := B[n, c, k] = Which[c == 0, 1, c<0 || nJean-François Alcover, Jan 21 2014, translated from Alois P. Heinz's Maple code *)

Formula

See program.
Showing 1-3 of 3 results.