A144213 Primes with a prime number of 0's in their binary representations.
17, 19, 37, 41, 43, 53, 71, 79, 83, 89, 101, 103, 107, 109, 113, 131, 137, 151, 157, 167, 173, 179, 181, 193, 199, 211, 227, 229, 233, 241, 257, 263, 269, 277, 281, 293, 311, 317, 337, 347, 349, 353, 359, 367, 373, 379, 389, 401, 431, 439, 443, 449, 461, 463
Offset: 1
Examples
41, a prime, in binary is 101001. This has three 0's and 3 is prime, so 41 is in the sequence.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
A080791 := proc(n) local i,dgs ; dgs := convert(n,base,2) ; nops(dgs)-add(i,i=dgs) ; end: isA144213 := proc(n) local no0 ; no0 := A080791(n) ; if isprime(n) and isprime(no0) then true ; else false; fi; end: for n from 1 to 1200 do if isA144213(n) then printf("%d,",n) ; fi; od: # R. J. Mathar, Sep 17 2008 # second Maple program: q:= n-> isprime(n) and isprime(add(1-i, i=Bits[Split](n))): select(q, [$1..500])[]; # Alois P. Heinz, Dec 27 2023
-
Mathematica
nmax = 100; Select[Prime[Range[nmax]], PrimeQ[Total@Mod[1 + IntegerDigits[#, 2], 2]] &] (* Andres Cicuttin, Jul 08 2020 *) Select[Prime[Range[100]],PrimeQ[DigitCount[#,2,0]]&] (* Harvey P. Dale, Feb 03 2021 *)
-
Python
from sympy import isprime def ok(n): return isprime(n.bit_length()-n.bit_count()) and isprime(n) print([k for k in range(464) if ok(k)]) # Michael S. Branicky, Dec 27 2023
Extensions
More terms from R. J. Mathar, Sep 17 2008