A144255 Semiprimes of the form k^2+1.
10, 26, 65, 82, 122, 145, 226, 362, 485, 626, 785, 842, 901, 1157, 1226, 1522, 1765, 1937, 2026, 2117, 2305, 2402, 2501, 2602, 2705, 3365, 3482, 3601, 3722, 3845, 4097, 4226, 4762, 5042, 5777, 6085, 6242, 6401, 7226, 7397, 7745, 8465, 9026, 9217, 10001, 10202
Offset: 1
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- Henryk Iwaniec, Almost-primes represented by quadratic polynomials, Inventiones Mathematicae 47 (2) (1978), pp. 171-188.
Programs
-
Magma
IsSemiprime:= func
; [s: n in [1..100] | IsSemiprime(s) where s is n^2 + 1]; // Vincenzo Librandi, Sep 22 2012 -
Mathematica
Select[Table[n^2 + 1, {n, 100}], PrimeOmega[#] == 2&] (* Vincenzo Librandi, Sep 22 2012 *)
-
PARI
select(n->bigomega(n)==2,vector(500,n,n^2+1)) \\ Zak Seidov Feb 24 2011
-
Python
from sympy import primeomega from itertools import count, takewhile def aupto(limit): form = takewhile(lambda x: x <= limit, (k**2+1 for k in count(1))) return [number for number in form if primeomega(number)==2] print(aupto(10202)) # Michael S. Branicky, Oct 26 2021
Formula
a(n) = A085722(n)^2 + 1.
Equals { n^2+1 | A193432(n)=2 }. - M. F. Hasler, Mar 11 2012
Comments