A144256 a(n) = smallest prime in the range [n^K, (n+1)^K], where K = log(127)/log(16) = 1.74717117169304146332...
2, 5, 7, 13, 17, 23, 31, 41, 47, 59, 67, 79, 89, 101, 127, 127, 149, 157, 173, 191, 211, 223, 241, 263, 277, 307, 317, 347, 359, 383, 409, 431, 457, 479, 499, 541, 557, 577, 607, 631, 659, 691, 719, 751, 787, 809, 839, 877, 907, 937, 967, 997, 1031, 1069
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..5000
- Carlos Rivera, Conjecture 60: Generalization of Legendre's Conjecture
Programs
-
Mathematica
k = Log[127]/Log[16]; Table[Select[Range[Ceiling[n^k], Floor[(n + 1)^k]], PrimeQ, 1][[1]], {n, 100}] (* T. D. Noe, Jan 30 2012 *)
-
PARI
i=[];for(n=1, 500, for(j=ceil(n^(log(127)/log(16))), ceil((n+1)^(log(127)/log(16))), if(isprime(j), i=concat(i,j)); if(isprime(j), break)));i
Extensions
Extended by T. D. Noe, Jan 30 2012
Comments