cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A152622 Tetrahedral numbers n*(n+1)*(n+2)/6 with n, n+1 and n+2 nonprime.

Original entry on oeis.org

120, 560, 1540, 2600, 2925, 3276, 5984, 6545, 7140, 9880, 15180, 19600, 20825, 22100, 27720, 29260, 30856, 41664, 43680, 45760, 54740, 70300, 73150, 76076, 88560, 102340, 105995, 109736, 125580, 129766, 134044, 138415, 142880, 161700
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Dec 10 2008

Keywords

Crossrefs

Programs

  • Maple
    tet := proc(n) n*(n+1)*(n+2)/6 ; end: for n from 1 to 300 do if not isprime(n) and not isprime(n+1) and not isprime(n+2) then printf("%d,",tet(n)) ; fi; od: # R. J. Mathar, Dec 10 2008
  • PARI
    p=7;forprime(q=11,1e2,for(n=p+1,q-3,print1(binomial(n+2,3)", "));p=q) \\ Charles R Greathouse IV, Dec 21 2011

Extensions

20400 replaced by 19600, 20625 replaced by 20825, R. J. Mathar, Dec 10 2008

A144486 Triangular numbers n*(n+1)/2 with n and n+1 composite, where number of prime factors in n = number of prime factors in n+1. (Prime factors are counted with multiplicity.)

Original entry on oeis.org

45, 105, 231, 325, 378, 561, 595, 741, 990, 1653, 2850, 3655, 3741, 4371, 4465, 4851, 6786, 7021, 7381, 7503, 7750, 8911, 9180, 10011, 10153, 10585, 10878, 11781, 12561, 13530, 14535, 14706, 15225, 15753, 20301, 20503, 21115, 22791, 23005, 23653
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Dec 09 2008

Keywords

Examples

			The first 11 values of n that satisfy the definition are 9, 14, 21, 25, 27, 33, 34, 38, 44, 57 and 75, so
a(1) = 9*10/2 = 45; 9 = 3*3, 10 = 2*5.
a(2) = 14*15/2 = 105; 14 = 2*7, 14 = 3*5.
a(3) = 21*22/2 = 231; 21 = 3*7, 22 = 2*11.
a(4) = 25*26/2 = 325; 25 = 5*5, 26 = 2*13.
a(5) = 27*28/2 = 378; 27 = 3*3*3, 28 = 2*2*7.
a(6) = 33*34/2 = 561; 33 = 3*11, 34 = 2*17.
a(7) = 34*35/2 = 595; 34 = 2*17, 35 = 5*7.
a(8) = 38*39/2 = 741; 38=2*19, 39=3*13.
a(9) = 44*45/2 = 990; 44=2*2*11, 45=3*3*5.
a(10) = 57*58/2 = 1653; 57=3*19, 58=2*29.
a(11) = 75*76/2 = 2850; 75=3*5*5, 76=2*2*19.
		

Crossrefs

Programs

  • Maple
    isA045920 := proc(n) if numtheory[bigomega](n) = numtheory[bigomega](n+1) then true; else false; fi; end: A045920 := proc(n) option remember ; local a; if n =1 then 2; else for a from procname(n-1)+1 do if isA045920(a) then RETURN(a) ; fi; od: fi; end: A000217 := proc(n) n*(n+1)/2 ; end: A144486 := proc(n) A000217(A045920(n+1)) ; end: for n from 1 to 100 do printf("%d,",A144486(n)) ; od: # R. J. Mathar, Dec 10 2008
  • Mathematica
    Times@@#/2&/@Select[Partition[Range[500],2,1],!PrimeQ[#[[1]]] && !PrimeQ[#[[2]]] && PrimeOmega[#[[1]]]==PrimeOmega[#[[2]]]&] (* Harvey P. Dale, May 23 2013 *)
  • PARI
    for(n=2, 1e3, if(bigomega(n+1) == bigomega(n+2) && k = (n+1)*(n+2)/2, print1(k", "))) \\ Altug Alkan, Oct 18 2015

Formula

a(n) = A000217(A045920(n+1)).

Extensions

Corrected and extended by R. J. Mathar and Ray Chandler, Dec 10 2008

A144519 Triangular numbers n*(n+1)/2 with n prime and n+1 nonprime.

Original entry on oeis.org

6, 15, 28, 66, 91, 153, 190, 276, 435, 496, 703, 861, 946, 1128, 1431, 1770, 1891, 2278, 2556, 2701, 3160, 3486, 4005, 4753, 5151, 5356, 5778, 5995, 6441, 8128, 8646, 9453, 9730, 11175, 11476, 12403, 13366, 14028, 15051, 16110, 16471, 18336, 18721, 19503, 19900, 22366, 24976, 25878
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Dec 15 2008

Keywords

Comments

This is A034953 without the 3. [From R. J. Mathar, Feb 21 2009]

Examples

			If n=3(prime) and n=4(nonprime), then 3*4/2=6=a(1). If n=5(prime) and n=6(nonprime), then 5*6/2=15=a(2). If n=7(prime) and n=8(nonprime), then 7*8/2=28=a(3). If n=11(prime) and n=12(nonprime), then 11*12/2=66=a(4). If n=13(prime) and n=14(nonprime), then 13+14/2=91=a(5), etc.
		

Crossrefs

Programs

  • Mathematica
    Table[(p(p+1))/2,{p,Prime[Range[2,50]]}] (* Harvey P. Dale, Dec 28 2023 *)

Extensions

Corrected definition. Inserted 2701, extended beyond 11175. - R. J. Mathar, Dec 19 2008

A144523 Triangular numbers n*(n+1)/2 with n and n+1 composite, where number of prime factors in n > number of prime factors in n+1.

Original entry on oeis.org

36, 210, 300, 528, 1035, 1176, 1275, 1485, 1596, 2080, 2346, 2926, 3240, 3321, 3570, 4095, 4278, 5460, 5565, 6105, 6555, 6903, 7260, 8256, 8778, 9870, 10440, 11628, 11935, 12880, 13695, 14196, 15576, 16653, 17020, 17391, 17955, 20100, 20910, 21736, 22578, 23436, 24310, 25200, 25425
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Dec 15 2008

Keywords

Comments

Subsequence of A144291 - R. J. Mathar, Jan 17 2009
Prime factors counted with multiplicity. - Harvey P. Dale, Aug 23 2020

Examples

			If n=8=2*2*2(number of prime factors = 3) and n+1=9=3*3(number of prime factors = 2), then 8*9/2=36=a(1). If n=20=2*2*5(number of prime factors = 3) and n+1=21=3*7(number of prime factors = 2), then 20*21/2=210=a(2). If n=24=2*2*2*3(number of prime factors = 4) and n+1=25=5*5(number of prime factors = 2), then 24*25/2=300=a(3), etc.
		

Crossrefs

Programs

  • Mathematica
    (Times@@#)/2&/@Select[Partition[Range[250],2,1],AllTrue[ #,CompositeQ] && PrimeOmega[#[[1]]]>PrimeOmega[#[[2]]]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 23 2020 *)

Extensions

Corrected definition. 2926 inserted and extended. - R. J. Mathar, Jan 17 2009
Showing 1-4 of 4 results.