A144300 Number of partitions of n minus number of divisors of n.
0, 0, 1, 2, 5, 7, 13, 18, 27, 38, 54, 71, 99, 131, 172, 226, 295, 379, 488, 621, 788, 998, 1253, 1567, 1955, 2432, 3006, 3712, 4563, 5596, 6840, 8343, 10139, 12306, 14879, 17968, 21635, 26011, 31181, 37330, 44581, 53166, 63259, 75169, 89128, 105554, 124752
Offset: 1
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
- Omar E. Pol, The shell model of partitions
Crossrefs
Programs
-
Maple
with(numtheory): b:= proc(n) option remember; `if`(n=0, 1, add(add(d, d=divisors(j)) *b(n-j), j=1..n)/n) end: a:= n-> b(n)- tau(n): seq(a(n), n=1..50); # Alois P. Heinz, Oct 07 2008
-
Mathematica
Table[PartitionsP[n]-DivisorSigma[0,n],{n,50}] (* Harvey P. Dale, Apr 10 2014 *)
-
PARI
al(n)=vector(n,k,numbpart(k)-numdiv(k))
-
Python
from sympy import npartitions, divisor_count def A144300(n): return npartitions(n)-divisor_count(n) # Chai Wah Wu, Oct 16 2023
Comments