cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A144300 Number of partitions of n minus number of divisors of n.

Original entry on oeis.org

0, 0, 1, 2, 5, 7, 13, 18, 27, 38, 54, 71, 99, 131, 172, 226, 295, 379, 488, 621, 788, 998, 1253, 1567, 1955, 2432, 3006, 3712, 4563, 5596, 6840, 8343, 10139, 12306, 14879, 17968, 21635, 26011, 31181, 37330, 44581, 53166, 63259, 75169, 89128, 105554, 124752
Offset: 1

Views

Author

Omar E. Pol, Sep 17 2008

Keywords

Comments

a(n) is also the number of partitions of n with at least one distinct part (i.e., not all parts are equal).

Crossrefs

A182114(n,n-1) = a(n). - Alois P. Heinz, Nov 02 2012

Programs

  • Maple
    with(numtheory): b:= proc(n) option remember; `if`(n=0, 1, add(add(d, d=divisors(j)) *b(n-j), j=1..n)/n) end: a:= n-> b(n)- tau(n):
    seq(a(n), n=1..50);  # Alois P. Heinz, Oct 07 2008
  • Mathematica
    Table[PartitionsP[n]-DivisorSigma[0,n],{n,50}] (* Harvey P. Dale, Apr 10 2014 *)
  • PARI
    al(n)=vector(n,k,numbpart(k)-numdiv(k))
    
  • Python
    from sympy import npartitions, divisor_count
    def A144300(n): return npartitions(n)-divisor_count(n) # Chai Wah Wu, Oct 16 2023

Formula

a(n) = p(n) - d(n) = A000041(n) - A000005(n).