A144374 Triangle T(n,k), n>=1, 1<=k<=n, read by rows, where sequence a_k of column k begins with (k+1) 1's and a_k(n) shifts k places down under Dirichlet convolution.
1, 1, 1, 2, 1, 1, 4, 2, 1, 1, 9, 2, 2, 1, 1, 18, 5, 2, 2, 1, 1, 40, 4, 3, 2, 2, 1, 1, 80, 12, 4, 3, 2, 2, 1, 1, 168, 8, 6, 2, 3, 2, 2, 1, 1, 340, 28, 6, 6, 2, 3, 2, 2, 1, 1, 698, 17, 10, 4, 4, 2, 3, 2, 2, 1, 1, 1396, 60, 13, 8, 4, 4, 2, 3, 2, 2, 1, 1, 2844, 34, 16, 5, 6, 2, 4, 2, 3, 2, 2, 1, 1, 5688
Offset: 1
Examples
Triangle begins: 1; 1, 1; 2, 1, 1; 4, 2, 1, 1; 9, 2, 2, 1, 1; 18, 5, 2, 2, 1, 1;
Links
- Alois P. Heinz, Rows n = 1..141, flattened
- N. J. A. Sloane, Transforms
Crossrefs
Programs
-
Maple
with(numtheory): dck:= proc(b,c) proc(n, k) option remember; add(b(d,k) *c(n/d,k), d=`if`(n<0,{}, divisors(n))) end end: B:= dck(T,T): T:= (n, k)-> if n<=k then 1 else B(n-k, k) fi: seq(seq(T(n, k), k=1..n), n=1..14);
-
Mathematica
dck[b_, c_][n_, k_] := dck[b, c][n, k] = Sum[b[d, k]*c[n/d, k], {d, If[n < 0, {}, Divisors[n]]}]; B = dck[T, T]; T[n_, k_] := If[n <= k, 1, B[n-k, k]]; Table[Table[T[n, k], {k, 1, n}], {n, 1, 14}] // Flatten (* Jean-François Alcover, Jan 15 2014, translated from Maple *)
Comments