cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A144367 Shifts 3 places left under Dirichlet convolution.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 3, 4, 6, 6, 10, 13, 16, 20, 32, 32, 46, 68, 73, 92, 152, 146, 200, 310, 312, 400, 658, 628, 832, 1328, 1302, 1664, 2740, 2604, 3400, 5500, 5300, 6812, 11178, 10600, 13770, 22388, 21412, 27540, 45132, 42824, 55392, 90352, 86048, 110784
Offset: 1

Views

Author

Alois P. Heinz, Sep 18 2008

Keywords

Crossrefs

3rd column of A144374. Cf. A000005.

Programs

  • Maple
    k:= 3: with(numtheory): dck:= proc(b,c) proc(n, k) option remember; add(b(d,k) *c(n/d,k), d=`if`(n<0,{}, divisors(n))) end end: B:= dck(T,T): T:= (n, k)-> if n<=k then 1 else B(n-k, k) fi: a:= n-> T(n,k): seq(a(n), n=1..55);
  • Mathematica
    dck[b_, c_][n_, k_] := dck[b, c][n, k] = Sum[b[d, k]*c[n/d, k], {d, If[n < 0, {}, Divisors[n]]}];
    B = dck[T, T];
    T[n_, k_] := If[n <= k, 1, B[n - k, k]];
    a[n_] := T[n, 3];
    Array[a, 55] (* Jean-François Alcover, Jun 11 2018, after Alois P. Heinz *)

Formula

G.f.: x + x^2 + x^3 * (1 + Sum_{i>=1} Sum_{j>=1} a(i)*a(j)*x^(i*j)). - Ilya Gutkovskiy, May 09 2019