cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A144381 a(n) = A142458(n+5, n). Fifth diagonal of A142458 triangle.

Original entry on oeis.org

1, 677, 47175, 1709675, 44451550, 947113254, 17716715490, 302925749370, 4856552119935, 74258231957275, 1095758678253041, 15736592058221517, 221321453958111620, 3062416225698505060, 41836761536767296660, 565817483249269872324, 7591501608353930033805, 101209790951020335444705
Offset: 1

Views

Author

Roger L. Bagula and Gary W. Adamson, Oct 01 2008

Keywords

Crossrefs

Programs

  • Magma
    [(1/1944)*((27*n^3 + 216*n^2 + 549*n + 440)*(3*n + 2 - 2*4^(n + 4)) +
       60*(9*n^2 + 57*n + 88)*7^(n + 3) - 32*(3*n + 11)*10^(n + 4) +
    880*13^(n + 3)): n in [1..30]]; // G. C. Greubel, Mar 16 2022
    
  • Mathematica
    T[n_, k_, m_]:= T[n, k, m]= If[k==1 || k==n, 1, (m*n-m*k+1)*T[n-1, k-1, m] + (m*k-m+1)*T[n-1, k, m]];
    A144381[n_]:= T[n+4,n,3];
    Table[A144381[n], {n,30}] (* modified by G. C. Greubel, Mar 16 2022 *)
  • Sage
    @CachedFunction
    def T(n,k,m): # A144381
        if (k==1 or k==n): return 1
        else: return (m*(n-k)+1)*T(n-1,k-1,m) + (m*k-m+1)*T(n-1,k,m)
    def A144381(n): return T(n+4, n, 3)
    [A144381(n) for n in (1..30)] # G. C. Greubel, Mar 16 2022

Formula

a(n) = A142458(n+5, n).
From G. C. Greubel, Mar 16 2022: (Start)
G.f.: x*(1 +602*x -1080*x^2 -172614*x^3 +1780275*x^4 -5025348*x^5 -7549548*x^6 +60043488*x^7 -99645984*x^8 +39979520*x^9 +27596800*x^10)/((1-x)^5*(1-4*x)^4*(1-7*x)^3*(1-10*x)^2*(1-13*x)).
a(n) = (1/1944)*((27*n^3 +216*n^2 +549*n +440)*(3*n +2 - 2*4^(n+4)) +
60*(9*n^2 +57*n +88)*7^(n+3) -32*(3*n+11)*10^(n+4) + 880*13^(n+3)). (End)

Extensions

Edited by G. C. Greubel, Mar 16 2022