A144399 Triangle in A144385 with rows left-adjusted.
1, 1, 1, 1, 1, 3, 7, 10, 10, 1, 6, 25, 75, 175, 280, 280, 1, 10, 65, 315, 1225, 3780, 9100, 15400, 15400, 1, 15, 140, 980, 5565, 26145, 102025, 323400, 800800, 1401400, 1401400, 1, 21, 266, 2520, 19425, 125895, 695695, 3273270, 12962950
Offset: 0
Examples
Triangle begins: 1 1, 1, 1 1, 3, 7, 10, 10 1, 6, 25, 75, 175, 280, 280 1, 10, 65, 315, 1225, 3780, 9100, 15400, 15400
Links
- Alois P. Heinz, Rows n = 0..100, flattened
- Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, Analysis of the Gift Exchange Problem, arXiv:1701.08394, 2017.
- David Applegate and N. J. A. Sloane, The Gift Exchange Problem (arXiv:0907.0513, 2009)
Programs
-
Maple
b:= proc(n) option remember; expand(`if`(n=0, 1, add( b(n-j)*binomial(n-1, j-1), j=1..min(3, n))*x)) end: T:= (n, k)-> coeff(b(k), x, n): seq(seq(T(n, k), k=n..3*n), n=0..6); # Alois P. Heinz, May 31 2018
-
Mathematica
b[n_] := b[n] = Expand[If[n == 0, 1, Sum[b[n - j]*Binomial[n - 1, j - 1], {j, 1, Min[3, n]}]*x]]; T[n_, k_] := Coefficient[b[k], x, n]; Table[T[n, k], {n, 0, 6}, { k, n, 3n}] // Flatten (* Jean-François Alcover, Jul 10 2018, after Alois P. Heinz *)
Comments