A144401 Padovan ( A000931) version of A038137: expansion of polynomials as antidiagonal: p(x,n)=1/(1-x-x^3)^n.
1, 1, 1, 1, 2, 1, 1, 3, 3, 2, 1, 4, 6, 6, 3, 1, 5, 10, 13, 11, 4, 1, 6, 15, 24, 27, 18, 6, 1, 7, 21, 40, 55, 51, 30, 9, 1, 8, 28, 62, 100, 116, 94, 50, 13, 1, 9, 36, 91, 168, 231, 234, 171, 81, 19, 1, 10, 45, 128, 266, 420, 505, 460, 303, 130, 28, 1, 11, 55, 174, 402, 714, 987, 1065
Offset: 1
Examples
{1}, {1, 1}, {1, 2, 1}, {1, 3, 3, 2}, {1, 4, 6, 6, 3}, {1, 5, 10, 13, 11, 4}, {1, 6, 15, 24, 27, 18, 6}, {1, 7, 21, 40, 55, 51, 30, 9}, {1, 8, 28, 62, 100, 116, 94, 50, 13}, {1, 9, 36, 91, 168, 231, 234, 171, 81, 19}, {1, 10, 45, 128, 266, 420, 505, 460, 303, 130, 28}, {1, 11, 55, 174, 402, 714, 987, 1065, 879, 527, 208, 41}, {1, 12, 66, 230, 585, 1152, 1792, 2220, 2175, 1640, 906, 330, 60}, {1, 13, 78, 297, 825, 1782, 3072, 4278, 4815, 4320, 3006, 1539, 520, 88}, {1, 14, 91, 376, 1133, 2662, 5028, 7752, 9807, 10122, 8391, 5424, 2586, 816, 129}
Programs
-
Mathematica
Clear[f, b, a, g, h, n, t]; f[t_, n_] = 1/(1 - t - t^3)^n; a = Table[Table[SeriesCoefficient[Series[f[t, m], {t, 0, 30}], n], {n, 0, 30}], {m, 1, 31}]; b = Table[Table[a[[n - m + 1]][[m]], {m, 1, n }], {n, 1, 15}]; Flatten[b]
Formula
p(x,n)=1/(1-x-x^3)^n; t(n,m)=anti_diagonal_expansion(p(x,n)).
Comments