A144402 Triangle in A144385 read downwards by columns.
1, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 0, 7, 6, 1, 0, 0, 10, 25, 10, 1, 0, 0, 10, 75, 65, 15, 1, 0, 0, 0, 175, 315, 140, 21, 1, 0, 0, 0, 280, 1225, 980, 266, 28, 1, 0, 0, 0, 280, 3780, 5565, 2520, 462, 36, 1, 0, 0, 0, 0, 9100, 26145, 19425, 5670, 750, 45, 1, 0, 0, 0, 0, 15400
Offset: 0
Links
- Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, Analysis of the Gift Exchange Problem, arXiv:1701.08394 [math.CO], 2017.
- David Applegate and N. J. A. Sloane, The Gift Exchange Problem, arXiv:0907.0513 [math.CO], 2009.
Crossrefs
Cf. A111246.
Programs
-
Mathematica
BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len-1}, {k, 0, len-1}]]; rows = 12; M = BellMatrix[If[#<3, 1, 0]&, rows]; Table[M[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 14 2018, after Peter Luschny *)
-
Sage
# uses[bell_matrix from A264428] bell_matrix(lambda n: 1 if n<3 else 0, 12) # Peter Luschny, Jan 19 2016
Comments