A144385
Triangle read by rows: T(n,k) is the number of partitions of [1, 2, ..., k] into exactly n blocks, each of size 1, 2 or 3 (n >= 0, 0 <= k <= 3n).
Original entry on oeis.org
1, 0, 1, 1, 1, 0, 0, 1, 3, 7, 10, 10, 0, 0, 0, 1, 6, 25, 75, 175, 280, 280, 0, 0, 0, 0, 1, 10, 65, 315, 1225, 3780, 9100, 15400, 15400, 0, 0, 0, 0, 0, 1, 15, 140, 980, 5565, 26145, 102025, 323400, 800800, 1401400, 1401400, 0, 0, 0, 0, 0, 0, 1, 21, 266, 2520, 19425, 125895, 695695, 3273270, 12962950, 42042000, 106506400, 190590400, 190590400
Offset: 0
Triangle begins:
[1]
[0, 1, 1, 1]
[0, 0, 1, 3, 7, 10, 10]
[0, 0, 0, 1, 6, 25, 75, 175, 280, 280]
[0, 0, 0, 0, 1, 10, 65, 315, 1225, 3780, 9100, 15400, 15400]
[0, 0, 0, 0, 0, 1, 15, 140, 980, 5565, 26145, 102025, 323400, 800800, 1401400, 1401400]
A generalization of the triangle in
A144331 (and in several other entries).
-
T := proc(n, k)
option remember;
if n = k then 1;
elif k < n then 0;
elif n < 1 then 0;
else T(n - 1, k - 1) + (k - 1)*T(n - 1, k - 2) + 1/2*(k - 1)*(k - 2)*T(n - 1, k - 3);
end if;
end proc;
for n from 0 to 12 do lprint([seq(T(n,k),k=0..3*n)]); od:
-
t[n_, n_] = 1; t[n_ /; n >= 0, k_] /; 0 <= k <= 3*n := t[n, k] = t[n-1, k-1] + (k-1)*t[n-1, k-2] + (1/2)*(k-1)*(k-2)*t[n-1, k-3]; t[, ] = 0; Table[t[n, k], {n, 0, 12}, {k, 0, 3*n}] // Flatten (* Jean-François Alcover, Jan 14 2014 *)
A144633
Triangle of 3-restricted Stirling numbers of the first kind (T(n,k), 0 <= k <= n), read by rows.
Original entry on oeis.org
1, 0, 1, 0, -1, 1, 0, 2, -3, 1, 0, -5, 11, -6, 1, 0, 10, -45, 35, -10, 1, 0, 35, 175, -210, 85, -15, 1, 0, -910, -315, 1225, -700, 175, -21, 1, 0, 11935, -6265, -5670, 5565, -1890, 322, -28, 1, 0, -134750, 139755, -5005, -39270, 19425, -4410, 546, -36, 1
Offset: 0
Triangle begins:
1;
0, 1;
0, -1, 1;
0, 2, -3, 1;
0, -5, 11, -6, 1;
0, 10, -45, 35, -10, 1;
0, 35, 175, -210, 85, -15, 1;
0, -910, -315, 1225, -700, 175, -21, 1;
- J. Y. Choi and J. D. H. Smith, On the combinatorics of multi-restricted numbers, Ars. Com., 75(2005), pp. 44-63.
- Alois P. Heinz, Rows n = 0..140, flattened
- J. Y. Choi and J. D. H. Smith, The Tri-restricted Numbers and Powers of Permutation Representations, J. Comb. Math. Comb. Comp. 42 (2002), 113-125.
- J. Y. Choi and J. D. H. Smith, On the Unimodality and Combinatorics of the Bessel Numbers, Discrete Math., 264 (2003), 45-53.
- J. Y. Choi et al., Reciprocity for multirestricted Stirling numbers, J. Combin. Theory 113 A (2006), 1050-1060.
For another version of this triangle see
A144634.
-
A:= proc(n,k) option remember; if n=k then 1 elif k A(i-1, j-1))^(-1) end:
T:= (n,k)-> M(n+1)[k+1, n+1]:
seq(seq(T(n,k), k=0..n), n=0..12); # Alois P. Heinz, Oct 23 2009
-
max = 10; t[n_, n_] = 1; t[n_ /; n >= 0, k_] /; (0 <= k <= 3*n) := t[n, k] = t[n-1, k-1] + (k-1)*t[n-1, k-2] + (1/2)*(k-1)*(k-2)*t[n-1, k-3]; t[, ] = 0; A144633 = Table[t[n, k], {n, 0, max}, {k, 0, max}] // Inverse // Transpose; Table[A144633[[n, k]], {n, 1, max}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jan 14 2014 *)
-
# uses[bell_matrix from A264428]
bell_matrix(lambda n: A144636(n+1), 10) # Peter Luschny, Jan 18 2016
A111246
Triangle read by rows: a(n,k) = number of partitions of an n-set into exactly k nonempty subsets, each of size <= 3.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 0, 7, 6, 1, 0, 10, 25, 10, 1, 0, 10, 75, 65, 15, 1, 0, 0, 175, 315, 140, 21, 1, 0, 0, 280, 1225, 980, 266, 28, 1, 0, 0, 280, 3780, 5565, 2520, 462, 36, 1, 0, 0, 0, 9100, 26145, 19425, 5670, 750, 45, 1, 0, 0, 0, 15400, 102025, 125895, 56595, 11550, 1155
Offset: 1
a(1,1)=1;
a(2,1)=1; a(2,2)=1;
a(3,1)=1; a(3,2)=3; a(3,3)=1;
a(4,1)=0; a(4,2)=7; a(4,3)=6; a(4,4)=1;
a(5,1)=0; a(5,2)=10; a(5,3)=25; a(5,4)=10; a(5,5)=1;
a(6,1)=0; a(6,2)=10; a(6,3)=75; a(6,4)=65; a(6,5)=15; a(6,6)=1; ...
- J. Y. Choi and J. D. H. Smith, On the combinatorics of multi-restricted numbers, Ars. Com., 75(2005), pp. 44-63.
- J. Y. Choi and J. D. H. Smith, The Tri-restricted Numbers and Powers of Permutation Representations, J. Comb. Math. Comb. Comp. 42 (2002), 113-125.
- J. Y. Choi and J. D. H. Smith, On the Unimodality and Combinatorics of the Bessel Numbers, Discrete Math., 264 (2003), 45-53.
- J. Y. Choi et al., Reciprocity for multirestricted Stirling numbers, J. Combin. Theory 113 A (2006), 1050-1060.
-
# The function BellMatrix is defined in A264428.
# Adds (1,0,0,0,...) as column 0.
BellMatrix(n -> `if`(n<3,1,0), 10); # Peter Luschny, Jan 27 2016
-
BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
rows = 12;
M = BellMatrix[If[# < 3, 1, 0]&, rows];
Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 24 2018, after Peter Luschny *)
-
row(n) = {x='x+O('x^(n+1)); polcoeff(serlaplace(exp(y*(x+x^2/2+x^3/6))), n, 'x); }
tabl(nn) = for(n=1, nn, print(Vecrev(row(n)/y))) \\ Jinyuan Wang, Dec 21 2019
Showing 1-3 of 3 results.
Comments