Ji Young Choi has authored 7 sequences.
A340620
T(n,k) is the number of 4-ary strings of length n+1 with k+1 indispensable digits and a nonzero leading digit with 0 <= k <= n.
Original entry on oeis.org
3, 6, 6, 10, 28, 10, 15, 81, 81, 15, 21, 186, 354, 186, 21, 28, 371, 1137, 1137, 371, 28, 36, 672, 3018, 4836, 3018, 672, 36, 45, 1134, 7023, 16374, 16374, 7023, 1134, 45, 55, 1812, 14829, 47286, 68644, 47286, 14829, 1812, 55, 66, 2772, 29043, 121314, 240021, 240021, 121314, 29043, 2772, 66
Offset: 0
Triangle begins
3;
6, 6;
10, 28, 10;
15, 81, 81, 15;
21, 186, 354, 186, 21;
28, 371, 1137, 1137, 371, 28;
36, 672, 3018, 4836, 3018, 672, 36;
...
There are 6 4-ary strings (10, 12, 13, 20, 23, 30) of length 2 with 1 indispensable digits and a nonzero leading digit.
There are 6 4-ary strings (11, 21, 22, 31, 32, 33) of length 2 with 2 indispensable digits and a nonzero leading digit.
There are 10 4-ary strings (111, 211, 221, 222, 311, 321, 322, 331, 332, 333) of length 3 with 3 indispensable digits and a nonzero leading digit.
Hence, T(1,0)=6, T(1,1)=6, T(2,2)=10.
-
A008287(n, k) = if(n<0, 0, polcoeff((1 + x + x^2 + x^3)^n, k));
A330509(n, k) = A008287(n, 3*k-2)+A008287(n, 3*k-1) + A008287(n, 3*k);
T(n, k) = A330509(n+1,k+1) - A330509(n,k+1);
tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n, k), ", "))); \\ Michel Marcus, Jan 19 2021
A330510
Triangle read by rows: T(n,k) is the number of ternary strings of length n+1 with k+1 indispensable digits and a nonzero leading digit, with 0 <= k <= n.
Original entry on oeis.org
2, 3, 3, 4, 10, 4, 5, 22, 22, 5, 6, 40, 70, 40, 6, 7, 65, 171, 171, 65, 7, 8, 98, 356, 534, 356, 98, 8, 9, 140, 665, 1373, 1373, 665, 140, 9, 10, 192, 1148, 3088, 4246, 3088, 1148, 192, 10, 11, 255, 1866, 6294, 11257, 11257, 6294, 1866, 255, 11
Offset: 0
Triangle begins
2;
3, 3;
4, 10, 4;
5, 22, 22, 5;
6, 40, 70, 40, 6;
7, 65, 171, 171, 65, 7;
...
There are 4 strings (100, 112, 120, 200) of length 3 with 1 indispensable digits and a nonzero leading digit.
There are 10 strings (101, 102, 110, 121, 122, 201, 202, 210, 212, 220) of length 3 with 2 indispensable digits are a nonzero leading digit.
There are 4 strings (111, 211, 221, 222) of length 3 with 3 indispensable digits and a nonzero leading digit.
Hence T(2,0)=4, T(2,1)=10, T(2,2)=4.
-
A027907(n, k) = if(n<0, 0, polcoef((1 + x + x^2)^n, k));
T(n,k) = {A027907(n+1, 2*k+1) + A027907(n+1, 2*k+2) - A027907(n, 2*k+1) - A027907(n, 2*k+2)} \\ Andrew Howroyd, Dec 20 2019
A330509
Triangle read by rows: T(n,k) is the number of 4-ary strings of length n with k indispensable digits, with 0 <= k <= n.
Original entry on oeis.org
1, 1, 3, 1, 9, 6, 1, 19, 34, 10, 1, 34, 115, 91, 15, 1, 55, 301, 445, 201, 21, 1, 83, 672, 1582, 1338, 392, 28, 1, 119, 1344, 4600, 6174, 3410, 700, 36, 1, 164, 2478, 11623, 22548, 19784, 7723, 1170, 45, 1, 219, 4290, 26452, 69834, 88428, 55009, 15999, 1857, 55
Offset: 0
Triangle begins
1;
1, 3;
1, 9, 6;
1, 19, 34, 10;
1, 34, 115, 91, 15;
1, 55, 301, 445, 201, 21;
...
There is 1 string (00) of length 2 with 0 indispensable digits.
There are 9 strings (01, 02, 03, 10, 12, 13, 20, 23, 30) of length 2 with 1 indispensable digit.
There are 6 strings (11, 21, 22, 31, 32, 33) of length 2 with 2 indispensable digits.
Hence T(2,0)=1, T(2,1)=9, T(2,2)=6.
-
Table[Total@ Map[Sum[Binomial[n, i] Binomial[n, # - 2 i], {i, 0, #/2}] &, 3 k + {-2, -1, 0}], {n, 0, 9}, {k, 0, n}] // Flatten (* Michael De Vlieger, Dec 23 2019, after Jean-François Alcover at A008287 *)
-
A008287(n, k) = if(n<0, 0, polcoeff((1 + x + x^2 + x^3)^n, k));
T(n, k) = A008287(n, 3*k-2)+A008287(n, 3*k-1) + A008287(n, 3*k);
A330381
Triangle read by rows: T(n,k) is the number of ternary strings of length n with k indispensable digits, with 0 <= k <= n.
Original entry on oeis.org
1, 1, 2, 1, 5, 3, 1, 9, 13, 4, 1, 14, 35, 26, 5, 1, 20, 75, 96, 45, 6, 1, 27, 140, 267, 216, 71, 7, 1, 35, 238, 623, 750, 427, 105, 8, 1, 44, 378, 1288, 2123, 1800, 770, 148, 9, 1, 54, 570, 2436, 5211, 6046, 3858, 1296, 201, 10, 1, 65, 825, 4302, 11505, 17303
Offset: 0
Triangle begins
1;
1, 2;
1, 5, 3;
1, 9, 13, 4;
1, 14, 35, 26, 5;
1, 20, 75, 96, 45, 6;
...
There is 1 string (00) of length 2 with 0 indispensable digits.
There are 5 strings (01, 02, 10, 20, 12) of length 2 with 1 indispensable digit.
There are 3 strings (11, 21, 22) of length 2 with 2 indispensable digits.
Hence T(2, 0) = 1, T(2, 1) = 5, T(2, 2) = 3.
-
Table[Total@ Map[Sum[Binomial[n, i] Binomial[n - i, # - 2 i], {i, 0, n}] &, 2 k + {-1, 0}], {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Dec 23 2019, after Adi Dani at A027907 *)
-
A027907(n, k) = if(n<0, 0, polcoeff((1 + x + x^2)^n, k));
T(n, k) = A027907(n, 2*k-1) + A027907(n, 2*k); \\ Jinyuan Wang, Dec 14 2019
A171996
A(n,k,m) is the number of permutations of an n-set with k disjoint cycles of length less than or equal to m, called the (n,k)-th m-restrained Stirling numbers of the first kind, and denoted by mS_1(n,k). The sequence shows the case of m=3.
Original entry on oeis.org
1, -1, 1, 2, -3, 1, 0, 11, -6, 1, 0, -20, 35, -10, 1, 0, 40, -135, 85, -15, 1, 0, 0, 490, -525, 175, -21, 1, 0, 0, -1120, 2905, -1540, 322, -28, 1, 0, 0, 2240, -12600, 11865, -3780, 546, -36, 1, 0, 0, 0, 47600, -76545, 38325, -8190, 870, -45, 1
Offset: 1
A(1,1,3)=1, A(1,2,3)=0, A(1,3,3)=0, A(1,4,3)=0, ...
A(2,1,3)=-1, A(2,2,3)=1, A(2,3,3)=0, A(2,4,3)=0, ...
A(3,1,3)=2, A(3,2,3)=-3, A(3,3,3)=1, A(3,4,3)=0, ...
A(4,1,3)=0, A(4,2,3)=11, A(4,3,3)=-6, A(4,4,3)=1, ...
-
T(n,k) = (-1)^(n-k)*n!*sum(j=0, k, binomial(j,n-k-j)*binomial(k,j)*3^(-n+k+j)*2^(n-k-2*j)/k!); \\ Jinyuan Wang, Dec 21 2019
-
# uses[bell_matrix from A264428]
# Adds a column 1, 0, 0, 0, ... at the left side of the triangle.
bell_matrix(lambda n: [1,-1,2][n] if n < 3 else 0, 12) # Peter Luschny, Jan 19 2016
A171998
In general, let A(n,k,m) denote the (n,k)-th entry of the inverse of the matrix consisting of the (n,k)-th m-restrained Stirling numbers of the second kind (-1)^(n-k) times the number of permutations of an n-set with k disjoint cycles of length less than or equal to m, as the (n+1,k+1)-th entry. The sequence shows A(n,k,3), which is a lower triangular matrix, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, -5, 7, 6, 1, -65, -15, 25, 10, 1, -455, -455, 0, 65, 15, 1, -1295, -4725, -1715, 140, 140, 21, 1
Offset: 1
A(1,1,3) = 1, A(1,2,3) = 0, A(1,3,3) = 0, A(1,4,3) = 0, ...
A(2,1,3) = 1, A(2,2,3) = 1, A(2,3,3) = 0, A(2,4,3) = 0, ...
A(3,1,3) = 1, A(3,2,3) = 3, A(3,3,3) = 1, A(3,4,3) = 0, ...
A(4,1,3) = -5, A(4,2,3) = 7, A(4,3,3) = 6, A(4,4,3) = 1, ...
In other words, A(n,k,3) is the matrix
1
1 1
1 3 1
-5 7 6 1
...
with all other entries in each row being 0. - _N. J. A. Sloane_, Dec 21 2019
- Ji Young Choi, Multi-restrained Stirling numbers, Ars Comb. 120 (2015), 113-127.
- John Engbers, David Galvin, and Cliff Smyth, Restricted Stirling and Lah number matrices and their inverses, Journal of Combinatorial Theory, Series A, 161 (2019), 271-298.
A111246
Triangle read by rows: a(n,k) = number of partitions of an n-set into exactly k nonempty subsets, each of size <= 3.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 0, 7, 6, 1, 0, 10, 25, 10, 1, 0, 10, 75, 65, 15, 1, 0, 0, 175, 315, 140, 21, 1, 0, 0, 280, 1225, 980, 266, 28, 1, 0, 0, 280, 3780, 5565, 2520, 462, 36, 1, 0, 0, 0, 9100, 26145, 19425, 5670, 750, 45, 1, 0, 0, 0, 15400, 102025, 125895, 56595, 11550, 1155
Offset: 1
a(1,1)=1;
a(2,1)=1; a(2,2)=1;
a(3,1)=1; a(3,2)=3; a(3,3)=1;
a(4,1)=0; a(4,2)=7; a(4,3)=6; a(4,4)=1;
a(5,1)=0; a(5,2)=10; a(5,3)=25; a(5,4)=10; a(5,5)=1;
a(6,1)=0; a(6,2)=10; a(6,3)=75; a(6,4)=65; a(6,5)=15; a(6,6)=1; ...
- J. Y. Choi and J. D. H. Smith, On the combinatorics of multi-restricted numbers, Ars. Com., 75(2005), pp. 44-63.
- J. Y. Choi and J. D. H. Smith, The Tri-restricted Numbers and Powers of Permutation Representations, J. Comb. Math. Comb. Comp. 42 (2002), 113-125.
- J. Y. Choi and J. D. H. Smith, On the Unimodality and Combinatorics of the Bessel Numbers, Discrete Math., 264 (2003), 45-53.
- J. Y. Choi et al., Reciprocity for multirestricted Stirling numbers, J. Combin. Theory 113 A (2006), 1050-1060.
-
# The function BellMatrix is defined in A264428.
# Adds (1,0,0,0,...) as column 0.
BellMatrix(n -> `if`(n<3,1,0), 10); # Peter Luschny, Jan 27 2016
-
BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
rows = 12;
M = BellMatrix[If[# < 3, 1, 0]&, rows];
Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 24 2018, after Peter Luschny *)
-
row(n) = {x='x+O('x^(n+1)); polcoeff(serlaplace(exp(y*(x+x^2/2+x^3/6))), n, 'x); }
tabl(nn) = for(n=1, nn, print(Vecrev(row(n)/y))) \\ Jinyuan Wang, Dec 21 2019
Comments