A330381 Triangle read by rows: T(n,k) is the number of ternary strings of length n with k indispensable digits, with 0 <= k <= n.
1, 1, 2, 1, 5, 3, 1, 9, 13, 4, 1, 14, 35, 26, 5, 1, 20, 75, 96, 45, 6, 1, 27, 140, 267, 216, 71, 7, 1, 35, 238, 623, 750, 427, 105, 8, 1, 44, 378, 1288, 2123, 1800, 770, 148, 9, 1, 54, 570, 2436, 5211, 6046, 3858, 1296, 201, 10, 1, 65, 825, 4302, 11505, 17303
Offset: 0
Examples
Triangle begins 1; 1, 2; 1, 5, 3; 1, 9, 13, 4; 1, 14, 35, 26, 5; 1, 20, 75, 96, 45, 6; ... There is 1 string (00) of length 2 with 0 indispensable digits. There are 5 strings (01, 02, 10, 20, 12) of length 2 with 1 indispensable digit. There are 3 strings (11, 21, 22) of length 2 with 2 indispensable digits. Hence T(2, 0) = 1, T(2, 1) = 5, T(2, 2) = 3.
Links
- J. Y. Choi, Indispensable digits for digit sums, Notes Number Theory Discrete Math 25 (2019), pp. 40-48.
- J. Y. Choi, Digit sums generalizing binomial coefficients, J. Integer Seq. 22 (2019), Article 19.8.3.
Programs
-
Mathematica
Table[Total@ Map[Sum[Binomial[n, i] Binomial[n - i, # - 2 i], {i, 0, n}] &, 2 k + {-1, 0}], {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Dec 23 2019, after Adi Dani at A027907 *)
-
PARI
A027907(n, k) = if(n<0, 0, polcoeff((1 + x + x^2)^n, k)); T(n, k) = A027907(n, 2*k-1) + A027907(n, 2*k); \\ Jinyuan Wang, Dec 14 2019
Extensions
More terms from Jinyuan Wang, Dec 14 2019
Comments