A330509
Triangle read by rows: T(n,k) is the number of 4-ary strings of length n with k indispensable digits, with 0 <= k <= n.
Original entry on oeis.org
1, 1, 3, 1, 9, 6, 1, 19, 34, 10, 1, 34, 115, 91, 15, 1, 55, 301, 445, 201, 21, 1, 83, 672, 1582, 1338, 392, 28, 1, 119, 1344, 4600, 6174, 3410, 700, 36, 1, 164, 2478, 11623, 22548, 19784, 7723, 1170, 45, 1, 219, 4290, 26452, 69834, 88428, 55009, 15999, 1857, 55
Offset: 0
Triangle begins
1;
1, 3;
1, 9, 6;
1, 19, 34, 10;
1, 34, 115, 91, 15;
1, 55, 301, 445, 201, 21;
...
There is 1 string (00) of length 2 with 0 indispensable digits.
There are 9 strings (01, 02, 03, 10, 12, 13, 20, 23, 30) of length 2 with 1 indispensable digit.
There are 6 strings (11, 21, 22, 31, 32, 33) of length 2 with 2 indispensable digits.
Hence T(2,0)=1, T(2,1)=9, T(2,2)=6.
-
Table[Total@ Map[Sum[Binomial[n, i] Binomial[n, # - 2 i], {i, 0, #/2}] &, 3 k + {-2, -1, 0}], {n, 0, 9}, {k, 0, n}] // Flatten (* Michael De Vlieger, Dec 23 2019, after Jean-François Alcover at A008287 *)
-
A008287(n, k) = if(n<0, 0, polcoeff((1 + x + x^2 + x^3)^n, k));
T(n, k) = A008287(n, 3*k-2)+A008287(n, 3*k-1) + A008287(n, 3*k);
A330510
Triangle read by rows: T(n,k) is the number of ternary strings of length n+1 with k+1 indispensable digits and a nonzero leading digit, with 0 <= k <= n.
Original entry on oeis.org
2, 3, 3, 4, 10, 4, 5, 22, 22, 5, 6, 40, 70, 40, 6, 7, 65, 171, 171, 65, 7, 8, 98, 356, 534, 356, 98, 8, 9, 140, 665, 1373, 1373, 665, 140, 9, 10, 192, 1148, 3088, 4246, 3088, 1148, 192, 10, 11, 255, 1866, 6294, 11257, 11257, 6294, 1866, 255, 11
Offset: 0
Triangle begins
2;
3, 3;
4, 10, 4;
5, 22, 22, 5;
6, 40, 70, 40, 6;
7, 65, 171, 171, 65, 7;
...
There are 4 strings (100, 112, 120, 200) of length 3 with 1 indispensable digits and a nonzero leading digit.
There are 10 strings (101, 102, 110, 121, 122, 201, 202, 210, 212, 220) of length 3 with 2 indispensable digits are a nonzero leading digit.
There are 4 strings (111, 211, 221, 222) of length 3 with 3 indispensable digits and a nonzero leading digit.
Hence T(2,0)=4, T(2,1)=10, T(2,2)=4.
-
A027907(n, k) = if(n<0, 0, polcoef((1 + x + x^2)^n, k));
T(n,k) = {A027907(n+1, 2*k+1) + A027907(n+1, 2*k+2) - A027907(n, 2*k+1) - A027907(n, 2*k+2)} \\ Andrew Howroyd, Dec 20 2019
A340620
T(n,k) is the number of 4-ary strings of length n+1 with k+1 indispensable digits and a nonzero leading digit with 0 <= k <= n.
Original entry on oeis.org
3, 6, 6, 10, 28, 10, 15, 81, 81, 15, 21, 186, 354, 186, 21, 28, 371, 1137, 1137, 371, 28, 36, 672, 3018, 4836, 3018, 672, 36, 45, 1134, 7023, 16374, 16374, 7023, 1134, 45, 55, 1812, 14829, 47286, 68644, 47286, 14829, 1812, 55, 66, 2772, 29043, 121314, 240021, 240021, 121314, 29043, 2772, 66
Offset: 0
Triangle begins
3;
6, 6;
10, 28, 10;
15, 81, 81, 15;
21, 186, 354, 186, 21;
28, 371, 1137, 1137, 371, 28;
36, 672, 3018, 4836, 3018, 672, 36;
...
There are 6 4-ary strings (10, 12, 13, 20, 23, 30) of length 2 with 1 indispensable digits and a nonzero leading digit.
There are 6 4-ary strings (11, 21, 22, 31, 32, 33) of length 2 with 2 indispensable digits and a nonzero leading digit.
There are 10 4-ary strings (111, 211, 221, 222, 311, 321, 322, 331, 332, 333) of length 3 with 3 indispensable digits and a nonzero leading digit.
Hence, T(1,0)=6, T(1,1)=6, T(2,2)=10.
-
A008287(n, k) = if(n<0, 0, polcoeff((1 + x + x^2 + x^3)^n, k));
A330509(n, k) = A008287(n, 3*k-2)+A008287(n, 3*k-1) + A008287(n, 3*k);
T(n, k) = A330509(n+1,k+1) - A330509(n,k+1);
tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n, k), ", "))); \\ Michel Marcus, Jan 19 2021
Showing 1-3 of 3 results.
Comments