A340620 T(n,k) is the number of 4-ary strings of length n+1 with k+1 indispensable digits and a nonzero leading digit with 0 <= k <= n.
3, 6, 6, 10, 28, 10, 15, 81, 81, 15, 21, 186, 354, 186, 21, 28, 371, 1137, 1137, 371, 28, 36, 672, 3018, 4836, 3018, 672, 36, 45, 1134, 7023, 16374, 16374, 7023, 1134, 45, 55, 1812, 14829, 47286, 68644, 47286, 14829, 1812, 55, 66, 2772, 29043, 121314, 240021, 240021, 121314, 29043, 2772, 66
Offset: 0
Examples
Triangle begins 3; 6, 6; 10, 28, 10; 15, 81, 81, 15; 21, 186, 354, 186, 21; 28, 371, 1137, 1137, 371, 28; 36, 672, 3018, 4836, 3018, 672, 36; ... There are 6 4-ary strings (10, 12, 13, 20, 23, 30) of length 2 with 1 indispensable digits and a nonzero leading digit. There are 6 4-ary strings (11, 21, 22, 31, 32, 33) of length 2 with 2 indispensable digits and a nonzero leading digit. There are 10 4-ary strings (111, 211, 221, 222, 311, 321, 322, 331, 332, 333) of length 3 with 3 indispensable digits and a nonzero leading digit. Hence, T(1,0)=6, T(1,1)=6, T(2,2)=10.
Links
- J. Y. Choi, Indispensable digits for digit sums, Notes on Number Theory and Discrete Mathematics, 25(2), (2019), pp. 40-48.
- J. Y. Choi, Digit sums generalizing binomial coefficients, J. Integer Seq. 22 (2019), Article 19.8.3.
Programs
Extensions
More terms from Michel Marcus, Jan 19 2021
Comments