A144385
Triangle read by rows: T(n,k) is the number of partitions of [1, 2, ..., k] into exactly n blocks, each of size 1, 2 or 3 (n >= 0, 0 <= k <= 3n).
Original entry on oeis.org
1, 0, 1, 1, 1, 0, 0, 1, 3, 7, 10, 10, 0, 0, 0, 1, 6, 25, 75, 175, 280, 280, 0, 0, 0, 0, 1, 10, 65, 315, 1225, 3780, 9100, 15400, 15400, 0, 0, 0, 0, 0, 1, 15, 140, 980, 5565, 26145, 102025, 323400, 800800, 1401400, 1401400, 0, 0, 0, 0, 0, 0, 1, 21, 266, 2520, 19425, 125895, 695695, 3273270, 12962950, 42042000, 106506400, 190590400, 190590400
Offset: 0
Triangle begins:
[1]
[0, 1, 1, 1]
[0, 0, 1, 3, 7, 10, 10]
[0, 0, 0, 1, 6, 25, 75, 175, 280, 280]
[0, 0, 0, 0, 1, 10, 65, 315, 1225, 3780, 9100, 15400, 15400]
[0, 0, 0, 0, 0, 1, 15, 140, 980, 5565, 26145, 102025, 323400, 800800, 1401400, 1401400]
A generalization of the triangle in
A144331 (and in several other entries).
-
T := proc(n, k)
option remember;
if n = k then 1;
elif k < n then 0;
elif n < 1 then 0;
else T(n - 1, k - 1) + (k - 1)*T(n - 1, k - 2) + 1/2*(k - 1)*(k - 2)*T(n - 1, k - 3);
end if;
end proc;
for n from 0 to 12 do lprint([seq(T(n,k),k=0..3*n)]); od:
-
t[n_, n_] = 1; t[n_ /; n >= 0, k_] /; 0 <= k <= 3*n := t[n, k] = t[n-1, k-1] + (k-1)*t[n-1, k-2] + (1/2)*(k-1)*(k-2)*t[n-1, k-3]; t[, ] = 0; Table[t[n, k], {n, 0, 12}, {k, 0, 3*n}] // Flatten (* Jean-François Alcover, Jan 14 2014 *)
A144644
Triangle in A144643 read by columns downwards.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 7, 6, 1, 0, 0, 15, 25, 10, 1, 0, 0, 25, 90, 65, 15, 1, 0, 0, 35, 280, 350, 140, 21, 1, 0, 0, 35, 770, 1645, 1050, 266, 28, 1, 0, 0, 0, 1855, 6930, 6825, 2646, 462, 36, 1, 0, 0, 0, 3675, 26425, 39795, 22575, 5880, 750, 45, 1
Offset: 0
Triangle begins:
1;
0, 1;
0, 1, 1;
0, 1, 3, 1;
0, 1, 7, 6, 1;
0, 0, 15, 25, 10, 1;
0, 0, 25, 90, 65, 15, 1;
0, 0, 35, 280, 350, 140, 21, 1;
0, 0, 35, 770, 1645, 1050, 266, 28, 1;
0, 0, 0, 1855, 6930, 6825, 2646, 462, 36, 1;
0, 0, 0, 3675, 26425, 39795, 22575, 5880, 750, 45, 1;
0, 0, 0, 5775, 90475, 211750, 172095, 63525, 11880, 1155, 55, 1;
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
- Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, Analysis of the Gift Exchange Problem, arXiv:1701.08394 [math.CO], 2017.
- David Applegate and N. J. A. Sloane, The Gift Exchange Problem, arXiv:0907.0513 [math.CO], 2009.
-
function t(n,k)
if k eq n then return 1;
elif k le n-1 or n le 0 then return 0;
else return (&+[Binomial(k-1,j)*t(n-1,k-j-1): j in [0..3]]);
end if;
end function;
A144644:= func< n,k | t(k,n) >;
[A144644(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 11 2023
-
With[{r=15}, Table[BellY[n, k, {1,1,1,1}], {n,0,r}, {k,0,n}]]//Flatten (* Jan Mangaldan, May 22 2016 *)
-
\\ Function bell_matrix is defined in A264428.
B = bell_matrix( n -> {if(n < 4, 1, 0)}, 9); for(n = 0, 9, printp(); for(k = 1, n, print1(B[n,k], " "))); \\ Peter Luschny, Apr 17 2019
-
# uses[bell_matrix from A264428]
bell_matrix(lambda n: 1 if n<4 else 0, 12) # Peter Luschny, Jan 19 2016
A151511
The triangle in A151359 read by rows downwards.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 7, 6, 1, 0, 1, 15, 25, 10, 1, 0, 1, 31, 90, 65, 15, 1, 0, 0, 63, 301, 350, 140, 21, 1, 0, 0, 119, 966, 1701, 1050, 266, 28, 1, 0, 0, 210, 2989, 7770, 6951, 2646, 462, 36, 1, 0, 0, 336, 8925, 33985, 42525, 22827, 5880, 750, 45, 1, 0, 0, 462, 25641
Offset: 0
Triangle begins:
1
0 1
0 1 1
0 1 3 1
0 1 7 6 1
0 1 15 25 10 1
0 1 31 90 65 15 1
0 0 63 301 350 140 21 1
0 0 119 966 1701 1050 266 28 1
- Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, Analysis of the Gift Exchange Problem, arXiv:1701.08394, 2017.
- David Applegate and N. J. A. Sloane, The Gift Exchange Problem, arXiv:0907.0513 [math.CO], 2009 (see Table 7 E5(n,k) page 16).
Begins in same way as triangle of Stirling numbers of second kind,
A048993, but is strictly different.
N. J. A. Sloane, Aug 09 2017
-
Unprotect[Power]; 0^0 = 1; a[n_ /; 1 <= n <= 6] = 1; a[] = 0; T[n, k_] := T[n, k] = If[k == 0, a[0]^n, Sum[Binomial[n - 1, j - 1] a[j] T[n - j, k - 1], {j, 0, n - k + 1}]]; Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 20 2016, after Peter Luschny *)
-
# uses[bell_matrix from A264428]
bell_matrix(lambda n: 1 if n<6 else 0, 12) # Peter Luschny, Jan 19 2016
A151509
The triangle in A151338 read by rows downwards.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 7, 6, 1, 0, 1, 15, 25, 10, 1, 0, 0, 31, 90, 65, 15, 1, 0, 0, 56, 301, 350, 140, 21, 1, 0, 0, 91, 938, 1701, 1050, 266, 28, 1, 0, 0, 126, 2737, 7686, 6951, 2646, 462, 36, 1, 0, 0, 126, 7455, 32725, 42315, 22827, 5880, 750, 45, 1, 0, 0, 0, 18711, 132055
Offset: 0
Triangle begins:
1;
0, 1;
0, 1, 1;
0, 1, 3, 1;
0, 1, 7, 6, 1;
0, 1, 15, 25, 10, 1;
0, 0, 31, 90, 65, 15, 1;
0, 0, 56, 301, 350, 140, 21, 1;
0, 0, 91, 938, 1701, 1050, 266, 28, 1;
- Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, Analysis of the Gift Exchange Problem, arXiv:1701.08394 [math.CO], 2017.
- David Applegate and N. J. A. Sloane, The Gift Exchange Problem, arXiv:0907.0513 [math.CO], 2009 (see Table 6 E4(n,k) page 15).
-
rows = 10;
BellMatrix[f_Function | f_Symbol, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
B = BellMatrix[If[# < 5, 1, 0]&, rows];
Table[B[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 14 2018, after Peter Luschny *)
-
# uses[bell_matrix from A264428]
bell_matrix(lambda n: 1 if n<5 else 0, 12) # Peter Luschny, Jan 19 2016
A144402
Triangle in A144385 read downwards by columns.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 0, 7, 6, 1, 0, 0, 10, 25, 10, 1, 0, 0, 10, 75, 65, 15, 1, 0, 0, 0, 175, 315, 140, 21, 1, 0, 0, 0, 280, 1225, 980, 266, 28, 1, 0, 0, 0, 280, 3780, 5565, 2520, 462, 36, 1, 0, 0, 0, 0, 9100, 26145, 19425, 5670, 750, 45, 1, 0, 0, 0, 0, 15400
Offset: 0
-
BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len-1}, {k, 0, len-1}]];
rows = 12;
M = BellMatrix[If[#<3, 1, 0]&, rows];
Table[M[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 14 2018, after Peter Luschny *)
-
# uses[bell_matrix from A264428]
bell_matrix(lambda n: 1 if n<3 else 0, 12) # Peter Luschny, Jan 19 2016
A171998
In general, let A(n,k,m) denote the (n,k)-th entry of the inverse of the matrix consisting of the (n,k)-th m-restrained Stirling numbers of the second kind (-1)^(n-k) times the number of permutations of an n-set with k disjoint cycles of length less than or equal to m, as the (n+1,k+1)-th entry. The sequence shows A(n,k,3), which is a lower triangular matrix, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, -5, 7, 6, 1, -65, -15, 25, 10, 1, -455, -455, 0, 65, 15, 1, -1295, -4725, -1715, 140, 140, 21, 1
Offset: 1
A(1,1,3) = 1, A(1,2,3) = 0, A(1,3,3) = 0, A(1,4,3) = 0, ...
A(2,1,3) = 1, A(2,2,3) = 1, A(2,3,3) = 0, A(2,4,3) = 0, ...
A(3,1,3) = 1, A(3,2,3) = 3, A(3,3,3) = 1, A(3,4,3) = 0, ...
A(4,1,3) = -5, A(4,2,3) = 7, A(4,3,3) = 6, A(4,4,3) = 1, ...
In other words, A(n,k,3) is the matrix
1
1 1
1 3 1
-5 7 6 1
...
with all other entries in each row being 0. - _N. J. A. Sloane_, Dec 21 2019
- Ji Young Choi, Multi-restrained Stirling numbers, Ars Comb. 120 (2015), 113-127.
- John Engbers, David Galvin, and Cliff Smyth, Restricted Stirling and Lah number matrices and their inverses, Journal of Combinatorial Theory, Series A, 161 (2019), 271-298.
A171996
A(n,k,m) is the number of permutations of an n-set with k disjoint cycles of length less than or equal to m, called the (n,k)-th m-restrained Stirling numbers of the first kind, and denoted by mS_1(n,k). The sequence shows the case of m=3.
Original entry on oeis.org
1, -1, 1, 2, -3, 1, 0, 11, -6, 1, 0, -20, 35, -10, 1, 0, 40, -135, 85, -15, 1, 0, 0, 490, -525, 175, -21, 1, 0, 0, -1120, 2905, -1540, 322, -28, 1, 0, 0, 2240, -12600, 11865, -3780, 546, -36, 1, 0, 0, 0, 47600, -76545, 38325, -8190, 870, -45, 1
Offset: 1
A(1,1,3)=1, A(1,2,3)=0, A(1,3,3)=0, A(1,4,3)=0, ...
A(2,1,3)=-1, A(2,2,3)=1, A(2,3,3)=0, A(2,4,3)=0, ...
A(3,1,3)=2, A(3,2,3)=-3, A(3,3,3)=1, A(3,4,3)=0, ...
A(4,1,3)=0, A(4,2,3)=11, A(4,3,3)=-6, A(4,4,3)=1, ...
-
T(n,k) = (-1)^(n-k)*n!*sum(j=0, k, binomial(j,n-k-j)*binomial(k,j)*3^(-n+k+j)*2^(n-k-2*j)/k!); \\ Jinyuan Wang, Dec 21 2019
-
# uses[bell_matrix from A264428]
# Adds a column 1, 0, 0, 0, ... at the left side of the triangle.
bell_matrix(lambda n: [1,-1,2][n] if n < 3 else 0, 12) # Peter Luschny, Jan 19 2016
Showing 1-7 of 7 results.
Comments