cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A144644 Triangle in A144643 read by columns downwards.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 7, 6, 1, 0, 0, 15, 25, 10, 1, 0, 0, 25, 90, 65, 15, 1, 0, 0, 35, 280, 350, 140, 21, 1, 0, 0, 35, 770, 1645, 1050, 266, 28, 1, 0, 0, 0, 1855, 6930, 6825, 2646, 462, 36, 1, 0, 0, 0, 3675, 26425, 39795, 22575, 5880, 750, 45, 1
Offset: 0

Views

Author

David Applegate and N. J. A. Sloane, Jan 25 2009

Keywords

Comments

The Bell transform of the sequence "g(n) = 1 if n<4 else 0". For the definition of the Bell transform see A264428. - Peter Luschny, Jan 19 2016

Examples

			Triangle begins:
  1;
  0, 1;
  0, 1,  1;
  0, 1,  3,    1;
  0, 1,  7,    6,     1;
  0, 0, 15,   25,    10,      1;
  0, 0, 25,   90,    65,     15,      1;
  0, 0, 35,  280,   350,    140,     21,     1;
  0, 0, 35,  770,  1645,   1050,    266,    28,     1;
  0, 0,  0, 1855,  6930,   6825,   2646,   462,    36,    1;
  0, 0,  0, 3675, 26425,  39795,  22575,  5880,   750,   45,  1;
  0, 0,  0, 5775, 90475, 211750, 172095, 63525, 11880, 1155, 55, 1;
		

Crossrefs

Programs

  • Magma
    function t(n,k)
      if k eq n then return 1;
      elif k le n-1 or n le 0 then return 0;
      else return (&+[Binomial(k-1,j)*t(n-1,k-j-1): j in [0..3]]);
      end if;
    end function;
    A144644:= func< n,k | t(k,n) >;
    [A144644(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 11 2023
  • Mathematica
    With[{r=15}, Table[BellY[n, k, {1,1,1,1}], {n,0,r}, {k,0,n}]]//Flatten (* Jan Mangaldan, May 22 2016 *)
  • PARI
    \\ Function bell_matrix is defined in A264428.
    B = bell_matrix( n -> {if(n < 4, 1, 0)}, 9); for(n = 0, 9, printp(); for(k = 1, n, print1(B[n,k], " "))); \\ Peter Luschny, Apr 17 2019
    
  • Sage
    # uses[bell_matrix from A264428]
    bell_matrix(lambda n: 1 if n<4 else 0, 12) # Peter Luschny, Jan 19 2016
    

Formula

Bivariate e.g.f. A144644(x,t) = Sum_{n>=0, k>=0} T(n,k)*x^n*t^k/n! = exp(t*G4(x)), where G4(x) = Sum_{i=1..4} x^i/i! is the e.g.f. of column 1. - R. J. Mathar, May 28 2019
From G. C. Greubel, Oct 11 2023: (Start)
T(n, k) = A144643(k, n).
T(n, k) = A144645(n, n-k).
T(n, k) = t(k, n), where t(n, k) = Sum_{j=0..3} binomial(k-1, j) * t(n-1, k-j-1), with t(n,n) = 1, t(n,k) = 0 if n < 1 or n > k.
Sum_{k=0..n} T(n, k) = A001681(n). (End)

A151511 The triangle in A151359 read by rows downwards.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 7, 6, 1, 0, 1, 15, 25, 10, 1, 0, 1, 31, 90, 65, 15, 1, 0, 0, 63, 301, 350, 140, 21, 1, 0, 0, 119, 966, 1701, 1050, 266, 28, 1, 0, 0, 210, 2989, 7770, 6951, 2646, 462, 36, 1, 0, 0, 336, 8925, 33985, 42525, 22827, 5880, 750, 45, 1, 0, 0, 462, 25641
Offset: 0

Views

Author

N. J. A. Sloane, May 14 2009

Keywords

Comments

The Bell transform of g(n) = 1 if n<6 else 0. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 19 2016

Examples

			Triangle begins:
1
0 1
0 1 1
0 1 3 1
0 1 7 6 1
0 1 15 25 10 1
0 1 31 90 65 15 1
0 0 63 301 350 140 21 1
0 0 119 966 1701 1050 266 28 1
		

Crossrefs

Begins in same way as triangle of Stirling numbers of second kind, A048993, but is strictly different. N. J. A. Sloane, Aug 09 2017
Cf. A148092 (row sums), A122848, A111246, A144644, A151509.

Programs

  • Mathematica
    Unprotect[Power]; 0^0 = 1; a[n_ /; 1 <= n <= 6] = 1; a[] = 0; T[n, k_] := T[n, k] = If[k == 0, a[0]^n, Sum[Binomial[n - 1, j - 1] a[j] T[n - j, k - 1], {j, 0, n - k + 1}]]; Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 20 2016, after Peter Luschny *)
  • Sage
    # uses[bell_matrix from A264428]
    bell_matrix(lambda n: 1 if n<6 else 0, 12) # Peter Luschny, Jan 19 2016

Formula

Bivariate e.g.f. A151511(x,t) = Sum_{n>=0, k>=0} T(n,k)*x^n*t^k/n! = exp(t*G6(x)), where G6(x) = Sum_{i=1..6} x^i/i! is the e.g.f. of column 1. - R. J. Mathar, May 28 2019

Extensions

Row 9 added by Michel Marcus, Feb 13 2014
More rows from R. J. Mathar, May 28 2019

A151338 Triangle read by rows: T(n,k) = number of partitions of [1..k] into n nonempty clumps of sizes 1, 2, 3, 4 or 5 (n >= 0, 0 <= k <= 5n).

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 3, 7, 15, 31, 56, 91, 126, 126, 0, 0, 0, 1, 6, 25, 90, 301, 938, 2737, 7455, 18711, 41811, 81081, 126126, 126126, 0, 0, 0, 0, 1, 10, 65, 350, 1701, 7686, 32725, 132055, 505351, 1824823, 6173167, 19339320, 55096041
Offset: 0

Views

Author

N. J. A. Sloane, May 13 2009

Keywords

Comments

Row n has 5n+1 entries.

Examples

			The triangle begins:
1
0, 1, 1, 1, 1, 1
0, 0, 1, 3, 7, 15, 31, 56, 91, 126, 126
0, 0, 0, 1, 6, 25, 90, 301, 938, 2737, 7455, 18711, 41811, 81081, 126126, 126126
0, 0, 0, 0, 1, 10, 65, 350, 1701, 7686, 32725, 132055, 505351, 1824823, 6173167, 19339320, 55096041, 138654516, 295891596, 488864376, 488864376
0, 0, 0, 0, 0, 1, 15, 140, 1050, 6951, 42315, 241780, 1310925, 6782776, 33549516, 158533375, 713733020, 3046944901, 12246267033, 45892143297, 158167994985, 491492022021, 1336310771796, 3030225834636, 5194672859376, 5194672859376
...
		

Crossrefs

This is one of a sequence of triangles: A144331, A144385, A144643, A151338, A151359, ...
See A151509, A151510 for other versions.
Showing 1-3 of 3 results.