A144404 Triangle T(n,k) = 3*binomial(n, k)^2 - binomial(n, k) - 1, read by rows.
1, 1, 1, 1, 9, 1, 1, 23, 23, 1, 1, 43, 101, 43, 1, 1, 69, 289, 289, 69, 1, 1, 101, 659, 1179, 659, 101, 1, 1, 139, 1301, 3639, 3639, 1301, 139, 1, 1, 183, 2323, 9351, 14629, 9351, 2323, 183, 1, 1, 233, 3851, 21083, 47501, 47501, 21083, 3851, 233, 1, 1, 289, 6029, 43079, 132089, 190259, 132089, 43079, 6029, 289, 1
Offset: 0
Examples
Triangle begins as: 1; 1, 1; 1, 9, 1; 1, 23, 23, 1; 1, 43, 101, 43, 1; 1, 69, 289, 289, 69, 1; 1, 101, 659, 1179, 659, 101, 1; 1, 139, 1301, 3639, 3639, 1301, 139, 1; 1, 183, 2323, 9351, 14629, 9351, 2323, 183, 1; 1, 233, 3851, 21083, 47501, 47501, 21083, 3851, 233, 1; 1, 289, 6029, 43079, 132089, 190259, 132089, 43079, 6029, 289, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Magma
[3*Binomial(n, k)^2 -Binomial(n, k) -1: k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 27 2021
-
Maple
T:= (n,m) -> 3*Binomial(n,m)^2 - Binomial(n,m)-1: seq(seq(T(n,m),m=0..n),n=0..10); # Robert Israel, Jul 11 2016
-
Mathematica
Table[3*Binomial[n,k]^2 -Binomial[n,k] -1, {n,0,12}, {k,0,n}]//Flatten
-
Sage
flatten([[3*binomial(n, k)^2 -binomial(n, k) -1 for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 27 2021
Formula
From Robert Israel, Jul 11 2016: (Start)
Row sums: 3*binomial(2*n,n) - 2^n - n - 1.
G.f. as triangle: g(x,y) = 3/sqrt(1-2*x-2*x*y+x^2-2*x^2*y+x^2*y^2) - 1/(1-x-x*y)+1/((1-x)*(1-x*y)). (End)
Extensions
Offset changed by Robert Israel, Jul 11 2016