cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A144405 Triangle T(n,k) = binomial(n, k)*(3*binomial(n, k)^2 - binomial(n, k) - 1), read by rows.

Original entry on oeis.org

1, 1, 1, 1, 18, 1, 1, 69, 69, 1, 1, 172, 606, 172, 1, 1, 345, 2890, 2890, 345, 1, 1, 606, 9885, 23580, 9885, 606, 1, 1, 973, 27321, 127365, 127365, 27321, 973, 1, 1, 1464, 65044, 523656, 1024030, 523656, 65044, 1464, 1, 1, 2097, 138636, 1770972, 5985126, 5985126, 1770972, 138636, 2097, 1
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Oct 03 2008

Keywords

Examples

			Triangle begins as:
  1;
  1,    1;
  1,   18,      1;
  1,   69,     69,       1;
  1,  172,    606,     172,        1;
  1,  345,   2890,    2890,      345,        1;
  1,  606,   9885,   23580,     9885,      606,        1;
  1,  973,  27321,  127365,   127365,    27321,      973,       1;
  1, 1464,  65044,  523656,  1024030,   523656,    65044,    1464,      1;
  1, 2097, 138636, 1770972,  5985126,  5985126,  1770972,  138636,   2097,    1;
  1, 2890, 271305, 5169480, 27738690, 47945268, 27738690, 5169480, 271305, 2890, 1;
		

Crossrefs

Programs

  • Magma
    [Binomial(n, k)*(3*Binomial(n, k)^2 - Binomial(n, k) - 1): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 27 2021
    
  • Maple
    A144405:= (n,k) -> binomial(n, k)*(3*binomial(n, k)^2 - binomial(n, k) - 1);
    seq(seq( A144405(n,k), k=0..n), n=0..12); # G. C. Greubel, Mar 27 2021
  • Mathematica
    Table[Table[Binomial[n, m]*(3*Binomial[n, m]^2 - Binomial[n, m] - 1), {m, 0, n}], {n, 0, 10}]; Flatten[%]
  • Sage
    flatten([[binomial(n, k)*(3*binomial(n, k)^2 - binomial(n, k) - 1) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 27 2021

Formula

T(n,k) = binomial(n, k)*(3*binomial(n, k)^2 - binomial(n, k) - 1).
Sum_{k=0..n} T(n, k) = A000172(n) - A000984(n) - 2^n = Hypergeometric3F2([-n, -n, -n], [1, 1], -1) - binomial(2*n, n) - 2^n. - G. C. Greubel, Mar 27 2021

Extensions

Edited by G. C. Greubel, Mar 27 2021