A144413 a(n) = Sum_{k=0..n} (-1)^k * binomial(n, k) * A000931(n-k+4).
0, 1, -1, 1, 0, -3, 10, -24, 49, -89, 145, -208, 245, -174, -176, 1121, -3185, 7137, -13920, 24301, -37926, 51256, -53615, 20407, 97265, -386224, 984549, -2083934, 3896480, -6537023, 9734175, -12231999, 10690624, 2126301, -39992150, 126414472, -297132815, 598577351, -1075051951, 1730868336, -2443923755
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (-3,-2,1).
Programs
-
Magma
I:=[0,1,1]; [n le 3 select I[n] else -3*Self(n-1) -2*Self(n-2) +Self(n-3): n in [1..51]]; // G. C. Greubel, Mar 27 2021
-
Mathematica
(* First program *) b[n_]:= b[n]= If[n==0, 0, If[n<3, 1, b[n-2] +b[n-3]]]; a[n_]:= Sum[(-1)^m*Binomial[n, m]*b[n-m], {m,0,n}]; Table[a[n], {n, 0, 50}] (* Second program *) LinearRecurrence[{-3,-2,1}, {0,1,-1}, 51] (* G. C. Greubel, Mar 27 2021 *)
-
Sage
@CachedFunction def A000931(n): return 1 if n==0 else sum( binomial(k, n-2*k-3) for k in (0..floor((n-3)/2))) def A144413(n): return sum( (-1)^k*binomial(n, k)*A000931(n-k+4) for k in (0..n)) [A144413(n) for n in (0..50)] # G. C. Greubel, Mar 27 2021
Formula
From R. J. Mathar, Jan 21 2009: (Start)
a(n) = -3*a(n-1) - 2*a(n-2) + a(n-3).
G.f.: x*(1 +2*x)/(1 +3*x +2*x^2 -x^3). (End)
Extensions
Terms a(30) onward added and edited by G. C. Greubel, Mar 27 2021