A144428 Square array read by ascending antidiagonals. A(L, n) is a table of sequences representing the number of valid nodes in level n of a labeled binary tree when the labeling rule forbids 1 of the 2^L states given by the last L digits of the parent label.
2, 2, 3, 2, 4, 5, 2, 4, 7, 8, 2, 4, 8, 13, 13, 2, 4, 8, 15, 24, 21, 2, 4, 8, 16, 29, 44, 34, 2, 4, 8, 16, 31, 56, 81, 55, 2, 4, 8, 16, 32, 61, 108, 149, 89, 2, 4, 8, 16, 32, 63, 120, 208, 274, 144, 2, 4, 8, 16, 32, 64, 125, 236, 401, 504, 233, 2, 4, 8, 16, 32, 64, 127, 248, 464, 773, 927, 377, 2, 4, 8, 16, 32, 64, 128, 253
Offset: 1
Links
- S. Christensen, Generalized Fibonacci numbers and Blackwell's renewal theorem, arXiv:1012.5006 [math.PR], 2010.
- S. Christensen, Generalized Fibonacci numbers and Blackwell's renewal theorem, Statist. Probab. Lett. 82 (2012), 1665-1668.
- Ross Drewe, On a generalization of F(n).
- O. Dunkel, Solutions of a probability difference equation, Amer. Math. Monthly, 32 (1925), 354-370.
- Eric Weisstein's World of Mathematics, Fibonacci n-Step Number.
- Wikipedia, Fibonacci number.
- L. Zhang and P. Hadjicostas, On sequences of independent Bernoulli trials avoiding the pattern '11..1', Math. Scientist, 40 (2015), 89-96.
Crossrefs
Cf. A172119.
Formula
From Petros Hadjicostas, Jul 26 2019: (Start)
Let A(L, m) be the term in level (row) L and column m, where L >= 2 and m >= 1. Then A(L, m) = 2^m for m = 1,...,L-1; A(L, L) = 2^L - 1; and A(L, m) = S(L, m) - S(L, m-L) for m >= L + 1, where
S(L, m) = Sum_{j = 0..floor(m/(L+1))} (-1)^j * binomial(m-L*j, m - (L+1)*j) * 2^(m - (L+1)*j). (See the formula by Richard Choulet for array A172119. It can also be found in Dunkel (1925).)
G.f. for row L >= 2: -1 + (1 - z^L)/(1 - 2*z + z^(L+1)).
(End)
Extensions
Name clarified by Petros Hadjicostas, Jul 26 2019
More terms from Petros Hadjicostas, Jul 26 2019
Comments