cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A144436 Triangle T(n, k) = (m*(n-k) + 1)*T(n-1, k-1) + (m*(k-1) + 1)*T(n-1, k) + j*T(n-2, k-1), where T(n, 1) = T(n, n) = 1, m = 1, and j = 4, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 8, 1, 1, 23, 23, 1, 1, 54, 170, 54, 1, 1, 117, 818, 818, 117, 1, 1, 244, 3255, 7224, 3255, 244, 1, 1, 499, 11697, 48443, 48443, 11697, 499, 1, 1, 1010, 39560, 276974, 513326, 276974, 39560, 1010, 1, 1, 2033, 128756, 1431604, 4422246
Offset: 1

Views

Author

Roger L. Bagula and Gary W. Adamson, Oct 04 2008

Keywords

Examples

			Triangle begins as:
  1;
  1,    1;
  1,    8,      1;
  1,   23,     23,       1;
  1,   54,    170,      54,       1;
  1,  117,    818,     818,     117,       1;
  1,  244,   3255,    7224,    3255,     244,       1;
  1,  499,  11697,   48443,   48443,   11697,     499,      1;
  1, 1010,  39560,  276974,  513326,  276974,   39560,   1010,    1;
  1, 2033, 128756, 1431604, 4422246, 4422246, 1431604, 128756, 2033, 1;
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_, m_, j_]:= T[n,k,m,j]= If[k==1 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m,j] + (m*(k-1)+1)*T[n-1,k,m,j] + j*T[n-2,k-1,m,j] ];
    Table[T[n,k,1,4], {n,15}, {k,n}]//Flatten (* modified by G. C. Greubel, Mar 03 2022 *)
  • Sage
    def T(n,k,m,j):
        if (k==1 or k==n): return 1
        else: return (m*(n-k)+1)*T(n-1,k-1,m,j) + (m*(k-1)+1)*T(n-1,k,m,j) + j*T(n-2,k-1,m,j)
    def A144436(n,k): return T(n,k,1,4)
    flatten([[A144436(n,k) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Mar 03 2022

Formula

T(n, k) = (m*(n-k) + 1)*T(n-1, k-1) + (m*(k-1) + 1)*T(n-1, k) + j*T(n-2, k-1), where T(n, 1) = T(n, n) = 1, m = 1, and j = 4.
From G. C. Greubel, Mar 03 2022: (Start)
T(n, n-k) = T(n, k).
T(n, 2) = 2^(n+1) - (n+5).
T(n, 3) = (1/2)*( n^2 + 9*n + 16 - 2^(n+2)*(n+3) + 142*3^(n-3) ). (End)

Extensions

Edited by G. C. Greubel, Mar 03 2022