A144438 Triangle T(n,k) by rows: T(n, k) = (n-k+1)*T(n-1, k-1) + k*T(n-1, k) + T(n-2, k-1) with T(n, 1) = T(n, n) = 1.
1, 1, 1, 1, 5, 1, 1, 14, 14, 1, 1, 33, 89, 33, 1, 1, 72, 413, 413, 72, 1, 1, 151, 1632, 3393, 1632, 151, 1, 1, 310, 5874, 22145, 22145, 5874, 310, 1, 1, 629, 19943, 125456, 224843, 125456, 19943, 629, 1, 1, 1268, 65171, 647299, 1899096, 1899096, 647299, 65171, 1268, 1
Offset: 1
Examples
Triangle begins as: 1; 1, 1; 1, 5, 1; 1, 14, 14, 1; 1, 33, 89, 33, 1; 1, 72, 413, 413, 72, 1; 1, 151, 1632, 3393, 1632, 151, 1; 1, 310, 5874, 22145, 22145, 5874, 310, 1; 1, 629, 19943, 125456, 224843, 125456, 19943, 629, 1; 1, 1268, 65171, 647299, 1899096, 1899096, 647299, 65171, 1268, 1;
Links
- G. C. Greubel, Rows n = 1..50 of the triangle, flattened
Programs
-
Mathematica
T[n_, k_, m_, j_]:= T[n,k,m,j]= If[k==1 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m,j] + (m*(k-1)+1)*T[n-1,k,m,j] + j*T[n-2,k-1,m,j]]; Table[T[n,k,1,1], {n,15}, {k,n}]//Flatten (* modified by G. C. Greubel, Mar 03 2022 *)
-
Sage
def T(n,k,m,j): if (k==1 or k==n): return 1 else: return (m*(n-k)+1)*T(n-1,k-1,m,j) + (m*(k-1)+1)*T(n-1,k,m,j) + j*T(n-2,k-1,m,j) def A144438(n,k): return T(n,k,1,1) flatten([[A144438(n,k) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Mar 03 2022
Formula
T(n,k) = (n-k+1)*T(n-1, k-1) + k*T(n-1, k) + T(n-2, k-1), T(n, 1) = T(n, n) = 1.
Sum_{k=1..n} T(n, k) = A001053(n+1).
From G. C. Greubel, Mar 03 2022: (Start)
T(n, n-k) = T(n, k).
T(n, 3) = (1/2)*(n^2 +3*n +1 + 73*3^(n-3) - 5*2^(n-2)*(2*n+3)). (End)