cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A144439 Triangle T(n, k) = (m*(n-k) + 1)*T(n-1, k-1) + (m*(k-1) + 1)*T(n-1, k) + j*T(n-2, k-1), where T(n, 1) = T(n, n) = 1, m = 2, and j = 2, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 8, 1, 1, 31, 31, 1, 1, 102, 326, 102, 1, 1, 317, 2406, 2406, 317, 1, 1, 964, 15087, 34336, 15087, 964, 1, 1, 2907, 86673, 380947, 380947, 86673, 2907, 1, 1, 8738, 473084, 3650206, 6925718, 3650206, 473084, 8738, 1, 1, 26233, 2502304, 31874880, 103245622, 103245622, 31874880, 2502304, 26233, 1
Offset: 1

Views

Author

Roger L. Bagula and Gary W. Adamson, Oct 05 2008

Keywords

Examples

			Triangle begins as:
  1;
  1,     1;
  1,     8,       1;
  1,    31,      31,        1;
  1,   102,     326,      102,         1;
  1,   317,    2406,     2406,       317,         1;
  1,   964,   15087,    34336,     15087,       964,        1;
  1,  2907,   86673,   380947,    380947,     86673,     2907,       1;
  1,  8738,  473084,  3650206,   6925718,   3650206,   473084,    8738,     1;
  1, 26233, 2502304, 31874880, 103245622, 103245622, 31874880, 2502304, 26233, 1;
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_, m_, j_]:= T[n,k,m,j]= If[k==1 || k==n,  1, (m*(n-k)+1)*T[n-1,k-1,m,j] + (m*(k-1)+1)*T[n-1,k,m,j] + j*T[n-2,k-1,m,j]];
    Table[T[n,k,2,2], {n,15}, {k,n}]//Flatten (* modified by G. C. Greubel, Mar 10 2022 *)
  • Sage
    def T(n,k,m,j):
        if (k==1 or k==n): return 1
        else: return (m*(n-k)+1)*T(n-1,k-1,m,j) + (m*(k-1)+1)*T(n-1,k,m,j) + j*T(n-2,k-1,m,j)
    def A144439(n,k): return T(n,k,2,2)
    flatten([[A144439(n,k) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Mar 10 2022

Formula

T(n, k) = (m*(n-k) + 1)*T(n-1, k-1) + (m*(k-1) + 1)*T(n-1, k) + j*T(n-2, k-1), where T(n, 1) = T(n, n) = 1, m = 2, and j = 2.
Sum_{k=0..n} T(n, k) = s(n), where s(n) = 2*(n-1)*s(n-1) + 2*s(n-2), s(1) = 1, s(2) = 2.
From G. C. Greubel, Mar 10 2022: (Start)
T(n, n-k) = T(n, k).
T(n, 2) = 4*3^(n-2) - (n+1).
T(n, 3) = (1/2)*(71*5^(n-3) - 8*(3*n+1)*3^(n-3) + n^2 + n - 1). (End)