A144441 Triangle T(n,k) read by rows: T(n, k) = (4*n-4*k+1)*T(n-1, k-1) + (4*k-3)*T(n-1, k) + 4*T(n-2, k-1) with T(n, 1) = T(n, n) = 1.
1, 1, 1, 1, 14, 1, 1, 83, 83, 1, 1, 432, 1550, 432, 1, 1, 2181, 19898, 19898, 2181, 1, 1, 10930, 217887, 523548, 217887, 10930, 1, 1, 54679, 2199237, 10589795, 10589795, 2199237, 54679, 1, 1, 273428, 21203828, 184722860, 362147222, 184722860, 21203828, 273428, 1
Offset: 1
Examples
Triangle begins as: 1; 1, 1; 1, 14, 1; 1, 83, 83, 1; 1, 432, 1550, 432, 1; 1, 2181, 19898, 19898, 2181, 1; 1, 10930, 217887, 523548, 217887, 10930, 1; 1, 54679, 2199237, 10589795, 10589795, 2199237, 54679, 1; 1, 273428, 21203828, 184722860, 362147222, 184722860, 21203828, 273428, 1;
Links
- G. C. Greubel, Rows n = 1..50 of the triangle, flattened
Crossrefs
Programs
-
Mathematica
T[n_, k_, m_, j_]:= T[n,k,m,j]= If[k==1 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m,j] + (m*(k-1)+1)*T[n-1,k,m,j] + j*T[n-2,k-1,m,j]]; Table[T[n,k,4,4], {n,15}, {k,n}]//Flatten (* modified by G. C. Greubel, Mar 03 2022 *)
-
Sage
def T(n,k,m,j): if (k==1 or k==n): return 1 else: return (m*(n-k)+1)*T(n-1,k-1,m,j) + (m*(k-1)+1)*T(n-1,k,m,j) + j*T(n-2,k-1,m,j) def A144441(n,k): return T(n,k,4,4) flatten([[A144441(n,k) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Mar 03 2022
Formula
T(n, k) = (4*n-4*k+1)*T(n-1, k-1) + (4*k-3)*T(n-1, k) + 4*T(n-2, k-1) with T(n, 1) = T(n, n) = 1.
Sum_{k=1..n} T(n, k) = s(n), where s(n) = 2*(2*n-3)*s(n-1) + 4*s(n-2) with s(1) = 1, s(2) = 2.
From G. C. Greubel, Mar 03 2022: (Start)
T(n, n-k) = T(n, k).
T(n, 2) = (1/2)*(7*5^(n-2) - (2*n+1)).
T(n, 3) = (1/8)*(4*n^2 - 5 - 14*(10*n-3)*5^(n-3) + 355*9^(n-3)). (End)