cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A144444 Triangle read by rows: T(n, k) = (1-n+k)*T(n-1, k-1) + (2-k)*T(n-1, k) - T(n-2, k-1) with T(n, 1) = T(n, n) = 1.

Original entry on oeis.org

1, 1, 1, 1, -1, 1, 1, -2, -2, 1, 1, -3, 5, -3, 1, 1, -4, 3, 3, -4, 1, 1, -5, 12, -17, 12, -5, 1, 1, -6, 12, -5, -5, 12, -6, 1, 1, -7, 23, -50, 47, -50, 23, -7, 1, 1, -8, 25, -27, 64, 64, -27, 25, -8, 1
Offset: 1

Views

Author

Roger L. Bagula and Gary W. Adamson, Oct 05 2008

Keywords

Examples

			Triangle begins as:
  1;
  1,  1;
  1, -1,  1;
  1, -2, -2,   1;
  1, -3,  5,  -3,  1;
  1, -4,  3,   3, -4,   1;
  1, -5, 12, -17, 12,  -5,   1;
  1, -6, 12,  -5, -5,  12,  -6,  1;
  1, -7, 23, -50, 47, -50,  23, -7,  1;
  1, -8, 25, -27, 64,  64, -27, 25, -8, 1;
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_, m_, j_]:= T[n,k,m,j]= If[k==1 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m,j] + (m*(k-1)+1)*T[n-1,k,m,j] + j*T[n-2,k-1,m,j]];
    Table[T[n,k,-1,-1], {n,15}, {k,n}]//Flatten (* modified by G. C. Greubel, Mar 04 2022 *)
  • Sage
    def T(n,k,m,j):
        if (k==1 or k==n): return 1
        else: return (m*(n-k)+1)*T(n-1,k-1,m,j) + (m*(k-1)+1)*T(n-1,k,m,j) + j*T(n-2,k-1,m,j)
    def A144444(n,k): return T(n,k,-1,-1)
    flatten([[A144444(n,k) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Mar 04 2022

Formula

T(n, k) = (1-n+k)*T(n-1, k-1) + (2-k)*T(n-1, k) - T(n-2, k-1) with T(n, 1) = T(n, n) = 1.
Sum_{k=1..n} T(n, k) = s(n), where s(n) = -(n-4)*s(n-1) - s(n-2), s(1) = 1, s(2) = 2.
From G. C. Greubel, Mar 04 2022: (Start)
Sum_{k=1..n} T(n, k) = 2*[n<3] + (-1)^(n-1)*A075374(n-2).
T(n, n-k) = T(n, k).
T(n, 2) = [n=2] - n + 2.
T(n, 3) = (1/2)*((n^2 -5*n +5) -5*(-1)^n) - [n=3]. (End)