A144445 Triangle, read by rows, T(n,k) = (7*n-7*k+1)*T(n-1, k-2) + (7*k-6)*T(n-1, k) + 7*T(n-2, k-1) with T(n, 1) = T(n, n) = 1.
1, 1, 1, 1, 23, 1, 1, 206, 206, 1, 1, 1677, 6341, 1677, 1, 1, 13452, 133451, 133451, 13452, 1, 1, 107659, 2403612, 5916231, 2403612, 107659, 1, 1, 861322, 40024068, 200795987, 200795987, 40024068, 861322, 1, 1, 6890633, 638151479, 5875203446, 11687580863, 5875203446, 638151479, 6890633, 1
Offset: 1
Examples
Triangle begins as: 1; 1, 1; 1, 23, 1; 1, 206, 206, 1; 1, 1677, 6341, 1677, 1; 1, 13452, 133451, 133451, 13452, 1; 1, 107659, 2403612, 5916231, 2403612, 107659, 1; 1, 861322, 40024068, 200795987, 200795987, 40024068, 861322, 1;
Links
- G. C. Greubel, Rows n = 1..50 of the triangle, flattened
Crossrefs
Programs
-
Mathematica
T[n_, k_, m_, j_]:= T[n,k,m,j]= If[k==1 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m,j] + (m*(k-1)+1)*T[n-1,k,m,j] + j*T[n-2,k-1,m,j] ]; Table[T[n,k,7,7], {n,15}, {k,n}]//Flatten (* modified by G. C. Greubel, Mar 04 2022 *)
-
Sage
def T(n,k,m,j): if (k==1 or k==n): return 1 else: return (m*(n-k)+1)*T(n-1,k-1,m,j) + (m*(k-1)+1)*T(n-1,k,m,j) + j*T(n-2,k-1,m,j) def A144445(n,k): return T(n,k,7,7) flatten([[A144445(n,k) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Mar 04 2022
Formula
T(n,k) = (7*n-7*k+1)*T(n-1, k-2) + (7*k-6)*T(n-1, k) + 7*T(n-2, k-1) with T(n, 1) = T(n, n) = 1.
Sum_{k=1..n} T(n, k) = s(n), where s(n) = (7*n-12)*s(n-1) + 7*s(n-2), s(1) = 1, s(2) = 2.
From G. C. Greubel, Mar 04 2022: (Start)
T(n, n-k) = T(n, k).
T(n, 2) = (1/7)*(23*8^(n-2) - (7*n+2)).
T(n, 3) = (1/98)*(49*n^2 - 21*n - 59 - 46*(56*n-33)*8^(n-3) + 5989*15^(n-3)). (End)