A144448 First bisection of A061039.
0, 16, 40, 8, 112, 160, 8, 280, 352, 16, 520, 616, 80, 832, 952, 40, 1216, 1360, 56, 1672, 1840, 224, 2200, 2392, 32, 2800, 3016, 40, 3472, 3712, 440, 4216, 4480, 176, 5032, 5320, 208, 5920, 6232, 728, 6880, 7216, 280, 7912, 8272, 320, 9016, 9400, 1088, 10192, 10600, 136, 11440, 11872, 152
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..5000
- Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1).
Programs
-
Mathematica
Table[Numerator[1/3^2 - 1/(2*n+1)^2], {n,100}] (* G. C. Greubel, Mar 06 2022 *)
-
Sage
[numerator(1/9 -1/(2*n+1)^2) for n in (1..100)] # G. C. Greubel, Mar 06 2022
Formula
a(n) = A061039(2*n+1).
From G. C. Greubel, Mar 06 2022: (Start)
a(n) = 3*a(n-27) - 3*a(n-54) + a(n-81).
a(n) = 8*A178978(n). (End)
Extensions
Formula index corrected, extended by R. J. Mathar, Dec 02 2008
Comments